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Abstract
The analysis of nuclear reactors for performance and safety assessment benefits
from the use of computational tools. In this context, this work aims at the
development and application of a thermal-hydraulics methodology and related
software that respond to emerging needs in the computational field: 1) greater
geometric and physics modelling flexibility; 2) streamlined coupling with other
single-physics to enable multi-physics capabilities; 3) parallel scalability on
High Performance Computing clusters; 4) adoption of modern programming
practices.

A coarse-mesh approach is proposed to offer a reasonable balance between
computational accuracy, comparable to that of sub-channel codes, and com-
putational burdens. The developed approach can make use of general 3-D
geometries with unstructured meshes, which are beneficial to the aforemen-
tioned geometric flexibility needs. Additionally, in a multi-physics context,
field transfer operations between the different physics are simplified both by
the adoption of a coarse-mesh approach and by the use of standardized mesh
formats. The employed programming framework consists of the Finite Volume
Method-based OpenFOAM library, which offers the desired features of massive
parallel scalability and of a modern object-oriented programming paradigm.

The coarse-mesh methodology is presented alongside a thorough theoretical
derivation of the governing equations for a generic multi-phase system. Based
on this, a computer code is developed for the modelling of one-phase and two-
phase flows, with a focus on the simulation of Sodium-cooled Fast Reactors
(SFRs), which represent the nearest-term deployable fast reactor technology.
These were also chosen as the simulation of phase change in sodium represents
a challenging case for the numerical stability of two-phase solution algorithms.

The main achievements of this development effort consist of: 1) a novel
solution algorithm for two-phase pressure-velocity coupling that enhances sta-
bility and performances compared to existing algorithms; 2) implementation
of the code based on object-oriented programming practices, which allow for a
seamless implementation of different working fluids and structure models; 3)
code verification via an ad-hoc implementation of the Method of Manufactured
Solutions; and 4) demonstrated good parallel scaling of the code up to thou-
sands of computer cores. In terms of applications: 1) preliminary validation
based on sodium boiling experiments; and 2) detailed investigation of exist-
ing and novel features for SFR fuel elements. Furthermore, the multi-physics
capabilities of the developed methodology are demonstrated by integrating it
within the GeN-Foam multi-physics environment. As a test case, the resulting
software is applied to the simulation of a Loss Of Flow Without SCRAM test
performed at the Fast Flux Test Facility. This benchmark re-analysis takes
place within the framework of a coordinated reasearch project by the Interna-
tional Atomic Energy Agency and is set to provide valuable feedback in terms
of code-to-code comparison data.
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Résumé
L’analyse des problématiques concernant la sûreté des réacteurs nucléaires
nécessite l’utilisation d’outils de calcul. Dans ce contexte, ce travail vise à
développer et appliquer une méthodologie thermo-hydraulique qui réponde aux
besoins émergents dans le domaine du calcul: 1) une plus grande souplesse de
modélisation géométrique et physique; 2) un couplage simplifié avec d’autres
physiques pour atteindre des permettre la modélisation de phénomènes multi-
physiques; 3) capacité de calcul parallèle sur infrastructures de calcul haute
performance; 4) adoption de pratiques de programmation modernes.

Une approche “coarse-mesh” est proposée pour offrir un équilibre entre la
précision de calcul, comparable à celle des codes “sub-channel”, et le coût
du calcul lui-même. L’approche développée peut utiliser des géométries 3-D
avec des maillages non-structurés, ce qui donne une grande flexibilité à l’outil
numérique pour le traitement de la géométrie du problème considéré. En
outre, dans un contexte multi-physique, les opérations de couplage entre les
différentes physiques sont simplifiées par l’adoption de cette approche et par
l’utilisation de formats de maillage standardisés. Le cadre de programmation
consiste dans le logiciel OpenFOAM, qui offre les caractéristiques souhaitées
en terme de programmation orientée objet.

La méthodologie “coarse-mesh” est présentée, ainsi qu’une dérivation des
équations qui gouvernent un système générique à plusieurs phases. Sur cette
base, un algorithme est développé pour la modélisation des systèmes mono-
phasiques et di-phasiques, en particulier pour la simulation des Réacteurs à
Neutrons Rapides à caloporteur sodium (RNR-Na), qui représentent une tech-
nologie de réacteur rapide déployable à court terme. Ce type de problème a
également été choisis car le changement de phase du sodium représente un cas
de modélisation difficile en terme de stabilité numérique des algorithmes.

Les principales réalisations de cet effort de développement sont: 1) un nou-
vel algorithme de solution pour le couplage pression-vitesse à deux phases qui
améliore la stabilité et les performances par rapport aux algorithmes existants;
2) adoption de pratiques de programmation orientée objet qui permettent une
mise en œuvre simplifié de différents fluides caloporteurs et modèles de struc-
ture; 3) vérification du code par une mise en œuvre ad-hoc de la Méthode
des Solutions Manufacturées; 4) démonstration des bonnes capacités de cal-
cul parallèle jusqu’à des milliers de processeurs. En termes d’applications:
1) le schéma de calcul est validé par comparaison avec des données expéri-
mentales d’ébullition au sodium; 2) des caractéristiques proposées pour les
éléments combustibles RNR-Na sont étudiées à titre de démonstration. En
outre, la méthodologie est intégrée dans l’environnement multi-physique du
code GeN-Foam et appliquée à la simulation d’un essai “Loss Of Flow With-
out SCRAM” effectué au Fast Flux Test Facility. Cette ré-analyse a lieu dans
le cadre d’un activité de recherche coordonnée par l’Agence Internationale de
l’Énergie Atomique et est destinée à fournir un retour d’information précieux
en termes de données concernant la comparaison code à code.
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Abstract
L’analisi dei reattori nucleari per la valutazione di performance e margini di
sicurezza beneficia dell’utilizzo di strumenti computazionali. In tale contesto,
questo lavoro punta allo sviluppo ed applicazione di una metodologia ter-
moidraulica e un relativo codice che rispondano a bisogni emergenti nel campo
computazionale: 1) maggior flessibilità di modellistica geometrica e fisica; ac-
coppiamento semplificato con altre fisiche per l’abilitazione di capacità multi-
fisiche; 3) capacità di calcolo parallela su infrastruture “High Performance
Computing”; 4) utilizzo di paradigmi di programmazione moderni.

Un approccio “coarse-mesh” cerca di offrire un bilancio ragionevole fra ac-
curatezza di calcolo, paragonabile a quella dei codici “sub-channel”, e inten-
sità computazionale. Questo approccio può trarre vantaggio dall’utilizzo di
geometrie 3-D con mesh non-strutturate, il che aiuta a garantire una mag-
gior flessibilità di modellistica geometrica. In aggiunta a ciò, in un contesto
multi-fisico l’accoppiamento fra le varie fisiche è semplificato dall’utilizzo di un
approccio “coarse-mesh” e dall’utilizzo di formati di mesh standardizzati. Il
framework computazionale che è stato adottato in questo lavoro consiste nella
libreria computazionale OpenFOAM basata sul Metodo a Volumi Finiti, la
quale offre alcuni degli aspetti desiderati, ovvero capacità di calcolo parallele
e un paradigma di programmazione moderno e orientato ad oggetti.

La metodologia “coarse-mesh” è presentata insieme ad una derivazione teor-
ica delle equazioni di bilancio per un generico sistema multi-fase. Sulla base
di ciò, è stato sviluppato un codice per la simulazione di flussi mono-fase e bi-
fase, principalmente rivolto ai reattori veloci raffreddati a sodio (SFRs), che
rappresentano la tipologia di reattori veloci dispiegabile nel più breve termine.
Questa tipologia di reattori è stata scelta anche in virtù delle problematiche
numeriche associate alla simulazione dei cambi di fase nel sodio, utili per la
valutazione della stabilità numerica degli algoritmi di soluzione.

I principali risultati di questo sviluppo consistono in: 1) un nuovo algo-
ritmo di soluzione bi-fase per l’accoppiamento pressione-velocità che migliora
stabilità e prestazioni rispetto ad algoritmi esistenti; 2) l’adozione di pratiche
di programmazione moderne ed orientate ad oggetti che permettono la im-
plementazione di diversi fluidi termovettori; 3) la verifica del codice tramite
un’implementazione ad-hoc del metodo delle “Manufactured Solutions”; 4) il
raggiungimento di una buona scalabilità parallela fino a migliaia di core com-
putazionali. In termini di applicazioni: 1) alcuni esperimenti di ebollizione
del sodio sono stati riprodotti per ragioni di confronto e convalidazione del
codice; 4) alcune caratterstiche di design degli elementi di combustibile degli
SFR sono state investigate come caso dimostrativo. Inoltre, la metodologia è
stata integrata nel codice multi-fisico GeN-Foam e applicata alla simulazione
di un test “Loss Of Flow Without SCRAM” effettuato presso la Fast Flux
Test Facility. Questa analisi di benchmark si svolge nell’ambito di un progetto
di ricerca coordinato dell’Agenzia Internazionale per l’Energia Atomica ed è
destinata a fornire preziosi feedback in termini di confronto fra codici.
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Апстракт
Анализа перформанси и сигурности нуклеарних реактора се ослања на ко-
ришћење рачунарских метода. У том контексту, оваj рад има за циљ развоj
и примену термо-хидрауличке методологиjе и софтвера коjи одговараjу
новим потребама у рачунарском домену: 1) већа флексибилност геомет-
риjског и физичког моделирања; 2) jедноставниjе повезивање са другим
физичким процесима унутар реактора, ради омогућења “мулти-физичког”
приступа; 3) паралелне обраде на “High Performance Computing” класте-
рима; 4) усваjање савремених метода у програмирању.

“Coarse-mesh” приступ нуди разумну равнотежу између рачунске тач-
ности, упоредиве са тачношћу “sub-channel” приступима и са друге стране
оптерећења рачунарских ресурса. Развиjен приступ може да користи опш-
те 3-D геометриjе са неструктурираним мрежама, коjе су корисне за горе
наведене захтеве за геометриjском флексибилношћу. Поред тога, у контек-
сту „мулти-физичког“ приступа, операциjе повезивања између различитих
физичких процеса унутар реактора поjедностављене су усваjањем присту-
па “coarse-mesh” и употребом стандардизованих мрежних формата. Упо-
требљени програмски оквир састоjи се од софтверског пакета OpenFOAM,
коjи нуди жељене карактеристике, то jест, потенциjал за обимне паралелне
обраде и модерне парадигме обjектно-ориjентисаног програмирања.

Методологиjа “coarse-mesh” jе представљена заjедно са теориjским из-
вођењем главних jедначина за општи више-фазни систем. На основу тога,
развиjен jе рачунарски програм за моделирање jедно-фазних и дво-фазних
токова, са фокусом на симулациjу брзих реактора хлађени натриjумом
(БНРи), коjи представљаjу наjразвиjениjу брзо-реакторску технологиjу.
Они су такође изабрани пошто симулациjа промене фазе у натриjуму пред-
ставља изазован случаj за процену нумеричке стабилности алгоритама за
решења дво-фазних токова.

Главна достигнућа овог рада огледаjу се у следећем: 1) нови алгоритам
за дво-фазну спрегу притиска и брзине коjи побољшава стабилност и пер-
формансе у поређењу са постоjећим алгоритмима; 2) усваjање савремених
обjектно-ориjентисаних метода програмирања коjе омогућаваjу поjедно-
стављену примену различитих расхладних флуида; 3) верификациjа про-
грама путем “Manufactured Solutions” метода; 4) доказане добре перфор-
мансе паралелних обрада до више-хиљада рачунарских jезгара. У смислу
примене истог: 1) прелиминарна потврда програма на основу изведених
експеримента кључања натриjума; 2) постоjеће и предложене нове карак-
теристике горивих елемената БНРа истражуjу се као демонстративни слу-
чаj. Mетодологиjа jе интегрисана у “више-физичко” окружење програма
GeN-Foam и примењена на симулациjу “Loss Of Flow Without SCRAM”
теста изведеног на Fast Flux Test Facility. Ова анализа се одвиjа у оквиру
координисаног истраживачког проjекта Међународне Агенциjе за Атом-
ску Енергиjу и очекуjе се да ће пружити драгоцене информациjе у оквиру
поређења резултата овог програма у односу на друге програме.
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Chapter 1

Introduction

1.1 Background

1.1.1 Role of nuclear reactor computer modelling

The process of designing and predicting the behaviour of nuclear reactors in
a variety of circumstances, from steady-state operation to safety-relevant ac-
cidents requires modelling of a variety of phenomena, that can be essentially
grouped in a number of physics, chiefly among which (yet not exclusively) are:

• thermal-hydraulics, namely the analysis of momentum and heat transfer
processes involving the coolant and/or moderator flow inside the reactor
vessel and other circuit components;

• neutronics, namely the analysis of neutron transport and reaction pro-
cesses through the media that constitute the reactor core with the aim
of predicting reactor power and fuel composition evolution;

• fuel behaviour, namely the analysis of the physical and chemical proper-
ties of the fuel and their evolution in response to varying reactor condi-
tions;

• structural-mechanics, namely the analysis of the physical and thermal
properties of the structures of interest that can range from the core to
the containment building as a whole in response to varying conditions.

These physics are fundamentally non-linear and highly coupled, which thus
characterizes nuclear reactors as multi-physics systems. As a further layer of
complexity, the temporal and spatial scales that characterize phenomena of
interest can span several orders of magnitude in both time and space. Tempo-
rally, these vary from fractions of a second (e.g. the simulation of Reactivity
Insertion Accidents (RIAs)) to years (e.g. the evolution of fuel and structural
material properties due to long-term irradiation). Spatially, these vary from
millimeters (e.g. fluid flow and heat transfer in the fuel pin lattice) to tens of
meters (e.g. fluid flow and heat transfer between the reactor vessel and heat
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exchangers). While experimental approaches for the investigation of relevant
reactor phenomena provide the ultimate connection between theory and real-
ity, the resulting theoretical validation as well as the plethora of data produced
by experiments enable the utilization of computers for a number of purposes.

Over the decades, with progress in computer hardware as well as increased
knowledge of nuclear reactor dynamics, computer codes have become an im-
portant support or integral element for activities ranging from reactor design
and development to safety analysis, decision-making for risk-informed activi-
ties, reactor licensing, and resolution of technical issues in general [1]. These
computer codes range in scope from the investigation of purely single-physics
phenomena to e.g. the modelling of the multi-physics coupling between a num-
ber of single-physics of interest, chiefly among which is the coupling between
thermal-hydraulics and neutronics [2].

To better understand the context of this work, a review of modelling ap-
proaches adopted by computer codes for the treatment of both single-physics
(with specific regards to thermal-hydraulics) and multi-physics phenomena is
presented. The objectives of this work are then discussed from the perspective
of how advancements in different key areas of scientific computing and pro-
gramming are taken advantage of in order to address some of the shortcomings
of existing (often referred to as “legacy”) computer codes and their modelling
approaches.

1.1.2 Overview of modelling approaches

Single-physics modelling To this day, the development of nuclear com-
puter codes capable of resolving all of the spatial scales that partake in defining
the domain of even a single-physics remains a challenging task. With regards
to these single-physics codes, different phenomena of interest spurred the de-
velopment of different codes with different applicability ranges [3]. In the field
of thermal-hydraulics, computer codes are generally distinguished based on
their target spatial resolution.

System analysis codes, also referred to as system codes, take advantage of
a limited spatial resolution to describe all the relevant components (reactor
vessel, core, circuit piping, heat exchangers, etc.) as a collection of 0-D or 1-D
elements. Advances in the hardware and the codes themselves are nonetheless
leading to 2-D and 3-D approaches for the modelling of the most critical com-
ponents, such as the core, albeit at a similarly limited spatial resolution scale.
Notable examples of system codes include ATHLET [4], RELAP5/-3D [5] and
TRACE [6].

Another category of thermal-hydraulics computer codes is that of sub-
channel codes [7], that operate at length scales that are intermediate between
that of a fuel assembly, also known as channel, and a fuel pin. The modelling
approaches are most commonly 2-D and 3-D, and while generally limited to
individual fuel elements or bundles of fuel elements, applications for full-core
simulations do exist, as testified e.g. by the CTF code [8] within the VERA
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simulation environment [9]. Boundary conditions for such analyses are gener-
ally provided from the broader-scale analyses performed via system codes [7].
In addition to CTF, further notable sub-channel codes consist of COBRA-TF
[10], SABENA [11], SABRE [12], SubChanFlow [13].
At a further level of spatial resolution lie what are commonly referred to as
Computational Fluid Dynamics (CFD) approaches, which are aimed at re-
solving fluid flow and heat transfer dynamics at an intra-pin scale, typically
with 3-D approaches. While CFD approaches have no theoretical maximum
length scale applicability range, this is practically constrained by the availabil-
ity of computational power, as larger geometries will take more computational
resources to treat at the envisioned scales of detail. An important aspect
should be nonetheless clarified. While the term CFD should by definition
collectively denote all computational methods for the treatment of reactor
thermal-hydraulics, in the nuclear community it is almost exclusively used
to represent computational approaches with the following characteristics: 1)
computational domain represented in 2-D or 3-D, possibly with the use of un-
structured meshes; 2) characteristic mesh length scales small enough to of fully
resolve the geometry of interest (e.g. the fluid in between fuel pins); 3) usage
of Reynolds-Averaged Navier Stokes (RANS)-based models for the treatment
of turbulence.

While higher-fidelity approaches exist, e.g. Large-Eddy Simulation (LES)
turbulence modelling or Direct Numerical Simulation (DNS) approaches, these
are fundamentally constrained by their computational cost. An example is
provided by Bieder et al. whose LES analysis of a single fuel assembly of a
Sodium-cooled Fast Reactor (SFR) entailed a computational domain of over
260 · 106 cells [14], which would otherwise largely suffice for the analysis of
an entire reactor core with RANS-based CFD approaches. The main value
of LES and DNS generally consists in providing benchmarks for gauging the
effectiveness of physical models used in “standard” (i.e. in the sense defined
earlier) RANS-based CFD approaches [15], in addition to experimental data.

Important consequences follow from the choice of a particular approach.
When moving up the spatial resolution scale from the finest level of engineering
interest to the coarsest level:

• the treatment of various physical phenomena needs to increasingly rely
on experimental data in the form of correlations to account for the loss
of geometric detail;

• the computational domains are reduced in both size and possibly dimen-
sionality (e.g. 3-D to 1-D), which significantly alleviates computational
burdens.

At one end of the scale, ideally, a DNS approach would exclusively require a
detailed definition of the domain geometry and the thermo-physical properties
of the fluid of interest in order to resolve all heat transfer, momentum transfer
phenomena for any possible reactor type or reactor geometry. On the other
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hand, system codes were generally designed for specific reactor types, reactor
geometries and/or working fluids so that specific experimental correlations
could be employed to account for the lack of spatial resolution. When one talks
of hard-coding, they refer precisely to the degree to which case-dependent data
(geometries of interest, correlations, etc.) is embedded in the code itself, rather
than being an input that can be selected and/or defined independently by the
user at code run time. In simpler terms, hard-coding ultimately manifests itself
in the practice of developing case-specific simulation codes (e.g. system codes
for the exclusive analysis of a number of Light Water Reactor (LWR) designs or
sub-channel codes for the exclusive analysis of sodium-cooled hexagonal-lattice
fuel elements).

Multi-physics modelling Due to the original limitations imposed by hard-
ware in the development of computer codes for reactor analyses, what became
well-established codes generally arose in the context of the analysis of a sin-
gle specific physics. With the increased availability of computational power
came the interest to achieve various degrees of coupling between the individual
physics for multi-physics simulations to analyze more complex phenomena. In
order to capitalize on the efforts that had been dedicated to the development
of single-physics codes, multi-physics approaches initially focused on what is
referred to as external coupling of existing single-physics codes. This consists
in developing program interfaces that exchange data between the individual
codes in the form of input-output files that are written to or read from disk
whenever necessary. In spite of the overheads associated with disk read-write
operations at every simulation step, this approach retained and still retains a
significant appeal. This is also due to the fact that it allows to couple codes
written with either different programming languages or, if using the same pro-
gramming language, that rely on different data management approaches for the
numerical representation of the coupling physical fields and quantities. With
time, where allowed by the use of the same programming language and/or sim-
ilar data management approaches, internal coupling strategies arose to further
improve performance. In such a strategy, coupling fields are passed directly
via memory rather than disk read-write operations. To this day, the external
and internal coupling of mature, independent single-physics codes represent
the vast majority of multi-physics approaches in the nuclear field, as testified
by the extensive review by Wang et al. [2].

1.2 Dissertation scope

1.2.1 Motivation

From a general perspective, “design-by-simulation” represents a trend of in-
creasing importance in the nuclear field, which calls for higher-accuracy ap-
proaches in the modelling of the different reactor physics and their coupling.
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This is even more-so relevant for the investigation and analysis of advanced
reactor concepts, which are enjoying a gradual resurgence of interest as tes-
tified by the Generation IV International Forum (GIF) [16] and for which:
1) “design-by-experiment” resources are lacking compared to what LWR tech-
nology had enjoyed over past decades; 2) legacy codes could be unsuitable for
their analysis due to the fact that advanced reactor technologies such as SFRs,
Molten Salt Reactors (MSRs), Lead-cooled Fast Reactors (LFRs), Gas-cooled
Fast Reactors (GFRs), Supercritical Water-cooled Reactors (SCWRs), Very
High Temperature Reactors (VHTRs) adopt typically unconventional geome-
tries and/or working fluids.

From the perspective of single-physics thermal-hydraulics, state-of-the-art
analysis with legacy codes is typically performed at a multi-scale level with the
use of multiple codes with different spatial resolution [7][17]. Practically, this
approach employs system codes for the simulation of reactor circuits, and the
results obtained from this scale of analysis are employed as boundary condi-
tions for the simulation of more spatially-limited domains (e.g. the reactor core
only) with a higher resolution. These are in turn treated via e.g. sub-channel
codes, and possibly CFD codes for the analysis of core plena or higher resolu-
tion of the fuel assemblies. However, the coupling of these thermal-hydraulics
codes for the purpose of achieving a multi-scale resolution entails a number
of disadvantages. The same disadvantages are encountered in the frame of
multi-physics coupling between different single-physics codes.

As a matter of fact, a code that consist of coupled legacy single-physics
codes (regardless of the scope, whether multi-physics codes or multi-scale
single-physics codes) is fundamentally characterized by two drawbacks, re-
gardless of whether the coupling is external or internal. On one hand, the
maintenance of such a code is essentially split among the maintenance of the
two (or more) single-physics codes and the maintenance of the data-passing
interface itself. This can be a cumbersome task to sustain over time owing to
possibly different developing institutions as well as code-to-code implementa-
tion differences. On the other hand, possible inconsistencies and differences
in the numerical methods (discretization schemes, linear solver solution algo-
rithms, intra-physics coupling schemes to resolve single-physics non-linearities)
used by each of the coupled single-physics codes can in principle affect simu-
lation results to a significant degree, and thus the achievable accuracy.

In the context of multi-physics codes, an emergent trend consists instead
of internally coupled multi-physics codes that rely on single-physics codes de-
veloped ex-novo yet within a unified framework. The driving factors behind
these efforts are summarized by:

• the benefits of multiple physics being treated in a single and coherent
programming framework ;

• the possibility to take advantage of modern hardware advances, raning
from parallel calculations on workstations to massive parallel scalability
on High Performance Computings (HPCs);
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• the possibility to take advantage of modern object-oriented paradigms
offered by programming languages such as C++.

The idea of such programming frameworks is to provide tools for the manage-
ment of fundamental yet by no means trivial nor necessarily nuclear-specific
aspects that lie at the basis of the vast majority of computer simulation codes,
such as the representation of the computational domain, fields, partial differen-
tial equations (PDEs) and linear system solvers. Due to their generality, these
frameworks are oriented towards 3-D approaches and provide native support
for parallel capabilities, to fully take advantage of modern hardware. Notable
examples of this are represented by the Finite Element Method (FEM)-based
MOOSE framework [18] and the Finite Volume Method (FVM)-based Open-
FOAM framework [19]. With specific regards to the latter, while it was devel-
oped as a general framework for CFD simulations (in the general, non-nuclear
sense), it was taken advantage of in multiple occasions for nuclear specific
applications, and represents the overarching framework for the present disser-
tation.

1.2.2 Objectives

The purpose of this work lies in the development and application of a reactor
thermal-hydraulics modelling methodology and a related computer code for the
treatment of one-phase and two-phase flows, in a manner that addresses some
of the issues of existing computational approaches as illustrated so far. This
is achieved via focusing on the following aspects: multi-scale capabilities, code
modelling and development flexibility, internal integration in a multi-physics
environment within a unified programming framework.

The methodology consists of a coarse-mesh approach, which sets out to
achieve a degree of accuracy comparable to sub-channel approaches while
achieving multi-scale potential, i.e. the possibility to model all reactor scales of
interest in a unified computational environment. The methodology thus offers
the potential to act in a manner analogous to system codes in reactor circuit
regions, sub-channel codes in reactor core regions (and will thus generally re-
quire correlations for heat, momentum transfer phenomena), CFD codes in
core plena.

The instantiation of the methodology in the form of a computer code
takes advantage of the aforementioned OpenFOAM computational environ-
ment, which simplifies the adoption of general, possibly unstructured meshes
for the modelling of geometries of interest (conducive to the investigation,
among others, of advanced reactor concepts), enhances code flexibility for the
implementation of possibly ad-hoc features and streamlines the multi-physics
coupling process via certain field manipulation and projection algorithms.

While there are no limitations in the reactor geometries and types that
can be modelled via a coarse-mesh approach, the work presented in this dis-
sertation is heavily focused on modelling phenomena in SFRs. This is due to
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a number of reasons. In the first place, SFRs represent one of the, if not the,
nearest-term deployable fast reactor technology for which dedicated simula-
tion tools are lacking when compared to the e.g. LWRs. In the second place,
two-phase flows in SFRs resulting from coolant boiling pose greater numerical
challenges when compared against boiling water flows in LWRs. It should be
stressed that in spite of this SFR-oriented work, the developed methodology
and computer code is fundamentally applicable to any reactor concept of in-
terest, insofar as experimental correlations for the treatment of system-specific
momentum, heat and mass transfer phenomena are available.

On the multi-physics side, the developed single-physics thermal-hydraulics
code is integrated within a broader multi-physics code represented by the
OpenFOAM-based GeN-Foam code, which was also subject to further devel-
opment. GeN-Foam was originally jointly developed at the Paul Scherrer Insti-
tute and at the Laboratory for Reactor Physics and Systems Behaviour, EPFL,
as a multi-physics code for the coupled 3-D simulation of reactor thermal-
hydraulics, neutronics and core structure-mechanics [20].

1.2.3 Outline

The remainder of this chapter outlines the structure of the rest of this docu-
ment. Chapter 2 presents the overall numerical and modelling framework that
is the foundation for the present thermal-hydraulics approach. In particular,
it covers fundamentals of the numerical discretization approach, the FVM as
well as an overview of the OpenFOAM environment. A rigorous derivation
of the mathematical tools that enable a coarse-mesh fluid flow description,
as well as their application for the derivation of governing equations for a
generic multi-phase system is presented. Chapter 3 presents in greater detail
how the tools developed in chapter 2 are used to construct and provide the
necessary closure of the governing thermal-hydraulics equations in a coarse-
mesh context. It further discusses the solution algorithms for the numerical
treatment of the governing equation, namely the treatment of pressure-velocity
coupling and the coupling of fluid-mechanics with enthalpy transport. This
is inclusive of the discussion of further developments in the area of two-phase
pressure-velocity coupling that bring a number of advantages compared to
other approaches found in existing OpenFOAM two-phase solvers. A verifi-
cation of the solution approaches via the Method of Manufactured solution is
provided for further clarity. The multi-core scaling performance of the two-
phase algorithm up to 4096 cores concludes the chapter. Chapter 4 presents
the validation of the methodology and the implemented models by comparison
against experimental data, with focus on SFR technology. This consists of the
modelling of a number of sodium-boiling scenarios in both quasi-steady-state
and transient conditions, with the introduction of sodium-specific models and
correlations. Chapter 5 discusses an application of the one-phase thermal-
hydraulics methodology for the investigation of both existing and proposed
novel design features for SFR fuel assemblies. Furthermore, this one-phase
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investigation is also aimed at establishing guidelines for the assessment of the
validity of the obtained coarse-mesh results, specifically in terms of mesh-
independence. Chapter 6 is dedicated to the application of the methodology
to the multi-physics, multi-scale simulation of one-phase thermal-hydraulics
and neutronics for a transient experiment conducted at the Fast Flux Test
Facility (FFTF), a former experimental SFR. Chapter 7 concludes this disser-
tation by providing a summary of the investigated topics and achieved results
as well as outlining possible future research directions.
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Chapter 2

Modelling framework

2.1 Introduction
This chapter discusses the foundational notions required for contextualizing
and understanding the developments presented in this work. The degree of
detail with which each topic is introduced and treated is limited to the extent
to which it is instrumental for further discussion.

Section 2.2 presents the numerical approach employed to represent and
solve the governing equations of the physics of interest, namely the Finite Vol-
ume Method (FVM). The numerical representation and solution framework
was not developed ex novo, and consists instead of the OpenFOAM C++ pro-
gramming library, introduced in section 2.2.4. This enables to take advantage
of a modern, object-oriented programming paradigm. Section 2.3 presents
the coarse-mesh methodology and how it takes advantage of volume averag-
ing techniques to produce a coarse-mesh representation of a generic system
of coupled partial differential equations (PDEs), as well as an application to
the governing equations of interest in thermal-hydraulics, namely the Navier-
Stokes equations and the enthalpy transport equation. Section 2.4 presents
some conclusive clarifications regarding the role of a coarse-mesh methodology
compared to other concepts explored in this chapter.

2.2 The Finite Volume Method

2.2.1 Introduction

The process of obtaining a numerical approximation to the solution of a PDE
or to a system of coupled PDEs defined over a set of domains and bounded by
a set of boundary and initial conditions fundamentally relies on discretization
practices. These can be distinguished between:

• the discretization of the PDE domains, which in the broader field of
Computational Fluid Dynamics (CFD) generally consist of a spatial do-
main (from 1-D to 3-D) and a temporal domain;
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• the discretization of the PDEs themselves. This allows to represent the
initial problem posed by the PDEs in terms of a set of algebraic rela-
tionships which can be numerically evaluated.

The FVM is one of the possible discretization approaches and the goal of the
present sub-sections is to introduce the most relevant aspects concerning it.

2.2.2 Domain discretization

The discretization of the domains over which the PDEs are defined results in
the computational domain, which is a collection of discrete elementary sub-
domains. In the field of CFD, these individual sub-domains are generally
referred to as control volumes or cells when related to the spatial domain, and
time steps or time levels when related to the temporal domain. The collection
of all the control volumes is also referred to as computational grid or mesh.
While there are no mathematical limitations on the shape of the boundary
∂Ωc of each cell Ωc other than to avoid cell overlapping, polyhedral cells are
the most reasonable choice for convenience of a simpler numerical representa-
tion. Any continuous field of interest φ∗ = φ∗(x, t) is then represented on the
discretized domain in terms of a piecewise constant function φ = φ(x, t), so
that over each cell Ωc that has a volume Vc:

φc ≡ φ(xp, t) =
1

Vc

∫
Ωc

φ∗(x, t) dV (2.2.1)

in which xp is the position of any point p ∈ Ωc. If the field φ∗ consists of the
solution to the PDEs of interest over said domain, the sought discrete field φ
will need to be obtained from the solution of the discretized set of PDEs.

2.2.3 Equation discretization

The Finite Volume discretization of the PDEs consists in their integration over
each control volume Ωc, time step t, t+ ∆t, and the application of the Stokes
theorem, where necessary, to relate the initial continuous domain problem to
a collection of algebraic relations between variables in the discrete domain. To
better illustrate the concept, the conservation equation of a generic quantity
φ∗ (which could be a scalar or a vector) advected by a field u∗ is used as an
example:

∂

∂t
φ∗ + ∇ · (φ∗u∗) = 0 (2.2.2)

Let us focus on a generic mesh cell Ωc of the discretized spatial domain and
on a generic time step of the discretized temporal domain bounded by t and
t+ ∆t. By integrating equation 2.2.2 over those domains, the following holds:∫ t+∆t

t

∫
Ωc

∂

∂t
φ∗ dV dt+

∫ t+∆t

t

∫
Ωc

∇ · (φ∗u∗) dV dt = 0 (2.2.3)
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Let us proceeded with the further discretization of the two terms indepen-
dently. With regards to the temporal derivative term, i.e. the first term on the
left-hand side (LHS) of 2.2.3, due to the independence of the spatial and tem-
poral coordinates and by recalling equation 2.2.1 that defines the discretized
field φ, it is shown that:∫ t+∆t

t

∫
Ωc

∂

∂t
φ∗ dV dt =

∫ t+∆t

t

∂

∂t

∫
Ωc

φ∗ dV dt = Vc

∫ t+∆t

t

∂

∂t
φc dt (2.2.4)

with φc = φ(xp, t) ∀p ∈ Ωc and it was further assumed that the cell volume
Vc does not change in time. The time derivative itself can be discretized in
a variety of ways to algebraically relate it to the new time step field value
φnc = φ(xp, t+ ∆t) and the old time step value φoc = φ(xp, t) or even older time
steps φooc = φ(xp, t − ∆t), φoooc = φ(xp, t − 2∆t), etc. depending on the time
discretization scheme. If we consider e.g. the Euler discretization scheme:

∂

∂t
φc =

φnc − φoc
∆t

(2.2.5)

By considering that φ is piecewise constant in time as well, then the space and
time-integrated time derivative term becomes:∫ t+∆t

t

∫
Ωc

∂

∂t
φ∗ dV dt = Vc (φnc − φoc) (2.2.6)

Let us now focus on the discretization of the advective term in equation 2.2.3,
i.e. the second term on the LHS. By taking advantage of the Stokes theorem
it is possible to equate the integral of ∇ · (φ∗u∗) over the cell Ωc to the integral
of φ∗u∗ over the boundary ∂Ωc of cell Ωc:∫ t+∆t

t

∫
Ωc

∇ · (φ∗u∗) dV dt =

∫ t+∆t

t

∫
∂Ωc

φ∗u∗ · dS dt (2.2.7)

in which dS = n dS is the infinitesimal surface area vector on ∂Ωc. Since
we assume that the mesh is composed exclusively of polyhedra, the integral
over the cell boundary can be decomposed into a sum of integrals over the
boundary faces:∫

∂Ωc

φ∗u∗ · dSc =
∑
f ∈ ∂Ωc

∫
f

φ∗u∗ · dS =
∑
f ∈ ∂Ωc

(∫
f

φ∗u∗ dS

)
· nf (2.2.8)

where nf represents the face area normal. Just as equation 2.2.1 relates the
continuous-domain fields to their discretized counterparts over each cell Ωc, it
is possible to define a discretized field φf that is piecewise constant over each
cell face f so that:

φf ≡ φ(xf , t) =
1

Sf

∫
f

φ∗(x, t) dS (2.2.9)
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in which xf is the position of any point p ∈ f ∈ ∂Ωc. By defining a new
continuous quantity F∗ = φ∗ u∗ and taking advantage of the discrete face
integral defined in equation 2.2.9, equation 2.2.8 can be rewritten as:∑

f ∈ ∂Ωc

(∫
f

F∗ dS

)
· nf =

∑
f ∈ ∂Ωc

Sf Ff · nf =
∑
f ∈ ∂Ωc

Ff · Sf (2.2.10)

We recall that the objective of this process is to reformulate the advective
term in terms of the discrete fields φ, u defined by equation 2.2.1. So far,
we reformulated it in terms of a discrete field Ff that exists on the mesh
faces. Recalling the definition of its continuous counterpart, F∗ = φ∗u∗, we
approximate Ff with the discrete fields φ, u as:

Ff ≈ (φu) |f (2.2.11)

where •|f denotes an interpolation of • to the face f . While not explicitly
stated so far, the discrete field values of any field have been assumed to be
representative of the continuous field values at the cell centers, so that the
generic interpolation •|f typically involves (at least) the values of the discrete
field • at the cell centers of the two cells that share face f . As an example, for
a generic variable φ advected by a field u, assuming that the face f is shared
between cells c0, c1 and has a normal nf that points from c0 to c1, the upwind
interpolation scheme prescribes:

φ|f =

{
φc 0 if uc0 · nf > 0

φc 1 if uc1 · nf > 0
(2.2.12)

Depending on the chosen interpolation scheme, the resulting computational
stencil might be larger. The ultimate point at issue is that (φu)|f can be ex-
pressed as a linear combination of the values φc, uc that exist in some neigh-
bourhood of face f . Thus, the volume and time integrated advective term
becomes:∫ t+∆t

t

∫
Ωc

∇ · (φ∗u∗) dV dt ≈
∫ t+∆t

t

∑
f ∈ ∂Ωc

(φu) |f · Sf dt (2.2.13)

The remaining time integral can be treated in a variety of ways. As all the
discretized fields are assumed to be piecewise constant in time just as they
are in space and by assuming that the cell faces do not change shape nor
orientation in time, the following is valid:∫ t+∆t

t

∑
f ∈ ∂Ωc

(φu) |f ·Sf dt =
∑
f ∈ ∂Ωc

(θo (φu)o |f + θn (φu)n |f ) ·Sf ∆t (2.2.14)

in which θo, θn with θo + θn = 1 are coefficients that weight the old and new
time step fields contributions, and (φu)o|f , (φu)n|f are the face values of φu
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obtained via interpolation of either the old time step fields φo, uo or the new
(i.e. current) time step fields φn, un. In simpler terms, what equation 2.2.14
means is that a good approximation to

∫ t+∆t

t
(φu)|f dt is represented by: 1)

(φu)o|f∆t if θo = 1; 2) (φu)n|f∆t if θn = 1; 3) a blending of the two for
intermediate values of θo, θn.

By combining the results obtained by equations 2.2.6, 2.2.14 and dividing
by the time step ∆t, the time and space-integrated initial PDE which was
formulated in terms of the continuous variables φ∗, u∗. can be re-written in
terms of the discrete cell and time step values φ, u as:

Vc (φnc − φoc)
∆t

+
∑
f ∈ ∂Ωc

(θo (φu)o |f + θn (φu)n |f ) · Sf = 0 (2.2.15)

This equation is valid within each cell Ωc, and its form emphasizes that the
original continuous PDE problem is represented in each cell via a single al-
gebraic relationship involving the old time step values φoc, nbr and new time
step values φnc, nbr, wherein by c, nbr we mean the cell Ωc as well as its neigh-
bouring cells, depending on the stencil used for face interpolations. If θo = 1,
the equation is said to be explicit as the unknown new time step value φnc
is algebraically related exclusively to the known old time step values φoc, nbr.
Conversely, if θn = 1, the problem is said to be implicit as φnc now depends also
on the (unknown) new time step values in the neighbouring cells φnc, nbr. The
problem can be thus described as a linear system and can be solved accordingly
via adequate techniques.

As it is clear by know, there is a considerable amount of aspects of differ-
ent nature that partake in defining the process of numerically solving a set of
PDEs, ranging from the construction and representation of the computational
mesh, the representation of the fields and quantities of interest over said mesh,
the schemes employed for the discretization in time and space of the PDEs,
the algorithms for the solution of the linear systems represented by the indi-
vidual discretized PDEs and practices for the evaluation of the quality of the
obtained solutions. With regards to this last point, the analysis of the errors
that are introduced by the domain and temporal discretization practices is
of fundamental importance [21][22]. This is especially true in a coarse-mesh
context, as it is discussed in chapter 5.

In order to deal with this level of baseline complexity related to the field of
CFD and allow ourselves to shift the focus towards higher-level modelling, it
was decided to rely on the extensive framework for Finite Volume modelling
provided by the OpenFOAM C++ programming library. By higher-level mod-
elling we mean: 1) the creation of the necessary numerical infrastructure re-
quired to represent specific phenomena in one and two-phase flows modelled
in a coarse-mesh environment; 2) the solution algorithms to address the cou-
pled nature of the governing equations (namely the Navier-Stokes equations
and enthalpy transport equations); 3) further solution algorithms to address
the coupling between the thermal-hydraulics and the other physics of interest
when modelling nuclear systems, namely neutronics and thermal-mechanics.

13



2.2.4 The OpenFOAM programming library

The OpenFOAM (namely Open Field Operation And Manipulation) library
is an open source C++ library and package of applications for the numerical
modelling and solution of a variety of problems in physics via the FVM [19][23].
While it was originally designed for CFD calculations, the features of the
library allowed it to be extended for the treatment of a variety of problems in
physics ranging from e.g. solid-mechanics to magnetohydrodynamics. What
the OpenFOAM library provides can be fundamentally classified as:

• a collection of solvers and utilities, both of which are fundamentally
programs that act on user provided cases ;

• a highly hierarchical and structured library of C++ custom object types
(also know as classes) and functions for the numerical representation of
the computational domain, mesh, fields, discretized PDEs, discretiza-
tion and interpolation schemes, linear solvers. This is referred to as the
OpenFOAM framework.

Solvers are programs that solve a certain implemented PDE or set of coupled
PDEs to compute solution fields, while utilities are programs with a number of
applications. These range from pre- and post-processing of fields and variables
of interest to geometry and mesh generation and manipulation, as well as mesh
conversion from popular mesh formats into OpenFOAM readable ones.

An important mechanism provided by the OpenFOAM framework provides
is that of run time selection. This allows to specify and set a number of
parameters at run time instead of compilation time, most importantly: term-
by-term PDE discretization and interpolation schemes as well as the choice of
linear solvers to be used for the solution of each discretized PDE. One of the
greatest advantages of OpenFOAM is that said mechanism is embedded in the
high-level syntax that can be used in the development of novel solvers. As an
example, the solution of the time-dependent continuity equation for a generic
quantity φ advected by a time-independent field u presented in equation 2.2.2
can be implemented in a few lines of code as:

surfaceScalarField UfSf(fvc::flux(U));
while (runTime.run())
{

runTime++;
fvScalarMatrix contEqn
(

fvm::ddt(phi) + fvm::div(UfSf, phi) == 0
);
contEqn.solve();
phi.correctBoundaryConditions();
runTime.write();

}
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The portions of code highlighted in red are custom object types in the Open-
FOAM library that are meant to represent e.g. fields of scalars that exist on
mesh faces (surfaceScalarField), sparse matrices that result from the
discretization of a scalar PDE (fvScalarMatrix). The portions of the code
highlighted in blue represent custom functions in the OpenFOAM library, e.g.
for the explicit evaluation of certain quantities (i.e. the fvc namespace) or for
the construction of the matrix coefficients representative of individual PDE
terms (i.e. the fvm namespace). The portions of code higligthed in cyan rep-
resent object methods, namely functions that belong to certain objects1 and
that can operate on their member variables, e.g. the solve() method of
an fvScalarMatrix type object, such as contEqn, proceeds to solve the
linear system that said object represents.

In addition to a few further lines of code, not reported, for the inclusion
of header files that contain the required object type and function declarations
and definitions, as well as some lines for the initialization of the runTime,
U and phi variables, the snippet provided above is all it takes to implement
a solver capable of solving the equation of interest. This example showcases
how the use of the OpenFOAM framework allows to abstract the physics of
interest both from the computational domain over which the problem is to
be solved as well as from the specifics of its numerical implementation, as the
discretization, interpolation, linear system solution operations are conveniently
encapsulated (in a broader and non-strictly programming-oriented sense) in a
variety of object types, their methods and functions. All of those schemes are
ultimately specified by the user at run time. Furthermore, as the library is
open source, all of those object types, methods and functions are accessible by
the user to further their understanding of the underlying mechanics and/or to
modify those according to their needs.

While the overall learning curve in both utilizing existing OpenFOAM
solvers as well as using the library to create new ones is rather steep, the
advantages in terms of code flexibility, ease of maintenance and reliance on a
modern programming paradigm were deemed highly desirable it in the context
of the present work.

2.3 The Coarse-mesh Methodology
The coarse-mesh methodology is an approach for modelling complex engi-
neering systems with the purpose of being computationally lightweight while
maintaining an acceptable degree of accuracy. It does so by borrowing from
the mathematical tools commonly found in the domain of porous body theory
[24], namely volume averaging techniques [25]. For this reason, the coarse-
mesh approach is sometimes referred to as porous medium-based coarse-mesh
approach, or simply porous body approach [26].

1By object we mean a variable of a custom data type that does not belong to standard
C++.
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To illustrate the fundamental idea behind the approach, let us task ourselves
with the simulation of fluid flow through a component such as the one repre-
sented in a) in Figure 2.3.1. It portrays a possible structure of interest, e.g.
a bundle of pins wrapped by an outer can that can accommodate fluid flow
along the pin axis direction.

Figure 2.3.1: a) a generic structure of interest, hereby represented by a bundle of square-
lattice pins wrapped by a can; b) definition of a REV in the bundle bulk (dark blue) and
bundle edge (light blue); c) representation of the bundle bulk (blue) and bundle edge (light
blue) regions whose averaged properties can be fully described by those computed over the
corresponding representative elementary volume (REV)s defined in b).

In order to investigate the flow in such a geometry via a generic fine-mesh
CFD approach or a sub-channel approach, the computational domain and
mesh would extend exclusively over the volume occupied by the fluid, in be-
tween the pins, with the degree of geometric complexity and mesh density
that this entails. A coarse-mesh approach would instead describe the system
as a collection of representative volumes (RVs), namely volumes over which
a number of geometric properties of the modelled structure are reasonably
constant. While some of those quantities are discussed later in greater detail,
these consist of:

• the volume fraction αs of the structure, namely the ratio of structure vol-
ume encompassed by the RV to the total RV volume; its complementary
1− αs is also known as the structure porosity ;

• the surface area density A′′′s , also know as structure volumetric area,
namely the ratio between the total structure surface area in the RV and
the total RV volume;

• the structure tortuosity tensor T , namely a tensor quantifying the length-
ening of diffusion lines.
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Examples of possible RVs are highlighted in b) in Figure 2.3.1. For the spe-
cific example at hand, it is reasonable to assume that these or some of these
properties will in principle differ between the bundle bulk and the bulk edge,
which have been highlighted in blue and light blue respectively. In order to
compute those quantities it is generally convenient to operate on the smallest
possible portion of each RV that is still representative of the RV as a whole.

An example of this is provided in c) in Figure 2.3.1, as it is easy to see
that, due to the structure regularity, the two volumes are still representative
of the RVs of the corresponding color in b). Such volumes are generally know
as REVs in virtue of the properties stated above. In simple terms, for each
RV, a REV represent a basis polyhedron for a 3-D tessellation of the RV.

After the definition of the RVs and the volume averaging process for the
calculation of relevant structure properties, a computational grid can be de-
fined over each RV. In principle, from a modelling perspective, there are no
particular limitations on the shape of the cells and as a consequence of the
averaging process over the RVs, they do not need to be conformal to any REV.
Practically, some limitations do nonetheless exist and are related to the nu-
merical solution process. Fundamentally, these are related to:

• mesh convergence-related aspects: a mesh that is too coarse will provide
results with unacceptable discretization errors and/or that are not in the
asymptotic convergence range;

• performance-related aspects: a mesh that is overly fine will inevitably
result in longer calculation times as well as additional limitations on
the maximum size of the simulation time step due to the well-known
Courant–Friedrichs–Lewy (CFL) condition;

Some aspects pertaining to mesh convergence are explored from both a theo-
retical and practical perspective in chapter 5. A further formal limitation is
rather conceptual in nature and comes from the observation that an overly-fine
mesh would defy the purpose of a coarse-mesh approach altogether.

After the definition of the RVs, their coarse-mesh properties and computa-
tional mesh, the governing equations can be solved over the grid. However, it is
in principle not guaranteed that the governing equations that hold true at the
fluid-intensive level (i.e. within a neighbourhood of a fluid parcel) will still hold
true at the coarse-mesh cell level. This is due to the fact that, as a result of
the volume averaging process, the mesh cells can in principle contain multiple
phases (regardless of whether they are fluids or a solid structure). Borrowing
from porous media theory nomenclature, these two levels are referred to as
“microscopic” and “macroscopic” levels respectively. Volume averaging tech-
niques are now discussed and applied to the governing equations, in a manner
that is not dissimilar from the Finite Volume approach discussed in section
2.2.
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2.3.1 Volume averaging techniques

Let us consider a generic domain Ω with volume V encompassing a portion Ωγ

with volume Vγ of a certain phase γ, along with possibly many other phases.
Please consider that for the remainder of this sub-section, by “phase” we refer to
any possible phase, i.e. both fluid and solid phases, unless otherwise specified.
For any given microscopic or local (i.e. that is physically defined only over
a certain phase) property φ∗γ of the generic phase γ the following averaging
operators are defined, namely the intrinsic average operator:

〈φ∗γ 〉I =
1

Vγ

∫
Ωγ

φ∗γ dV (2.3.1)

and the superficial average operator:

〈φ∗γ 〉 =
1

V

∫
Ωγ

φ∗γ dV (2.3.2)

In general, extensive physical quantities2 are macroscopically described in
terms of their superficial average, while intensive physical quantities3 are
macroscopically described by their intrinsic average, as is commonly done in
porous media theory [27].

The superficial average operator can be used to relate microscopically-
defined quantities to their macroscopic equivalent (i.e. that are defined at the
coarse-mesh level). In this chapter, the ∗ superscript is used to denote that
a quantity is microscopic. Let us consider the indicator function of a given
phase χ∗γ defined as:

χ∗γ(x) =

{
1 if x ∈ Ωγ

0 otherwise
(2.3.3)

The superficial average of the indicator function yields the volume fraction of
the given phase:

αγ ≡ 〈χ∗γ 〉 =
Vγ
V

(2.3.4)

This allows to relate the intrinsic and superficial averages as:

〈φ∗γ 〉 = αγ 〈φ∗γ 〉I (2.3.5)

A further quantity that is introduced in the present context is the deviation
φ̃γ of the local quantity φ∗γ with respect to the intrinsic average 〈φ∗γ 〉I :

φ̃∗γ = φ∗γ − 〈φ∗γ 〉I (2.3.6)

2Quantities that depend on the amount of matter under investigation, e.g. mass, volume,
energy.

3Quantities that do not depend on the amount of matter under investigation, e.g. density,
pressure, temperature.
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As previously stated, the governing equations at the coarse-mesh level are
obtained via a superficial average of the microscopic ones, which are physically
known. Due to the additivity of the averaging operator (as it consists of an
integral), this equates to a term-by-term superficial average of the governing
equations. However, depending on the quantity of interest governed by the
equations, it could be expressed either in terms of its superficial or intrinsic
average. In the next paragraphs, the main properties of the superficial and
intrinsic average are thus explored before proceeding with the description of
the fully averaged equations.

Volume average of a constant Assume that φ∗γ is a local quantity of the
fluid phase that is constant over Ωγ. From the definition of intrinsic average
in 2.3.1 one has:

〈φ∗γ 〉I = φ∗γ (2.3.7)

Then, it stems from equation 2.3.5 that:

〈φ∗γ 〉 = αγ φ
∗
γ (2.3.8)

Volume average of the deviation Since the averaging operator is additive,
the superficial average of the deviation φ̃γ is:

〈 φ̃γ 〉 = 〈φ∗γ 〉 − 〈 〈φ∗γ 〉I 〉

By considering that the intrinsic average is by definition constant over Ωγ,
equation 2.3.7 can be employed to obtain:

〈 φ̃γ 〉 = 〈φ∗γ 〉 − αγ〈φ∗γ 〉I

However, the relationship between superficial and intrinsic average (equation
2.3.5) then implies:

〈 φ̃γ 〉 = 0 (2.3.9)

Such result is expected as the deviation from the average value of any quantity
should vanish if averaged on the same volume on which the average is defined.

Volume average of a scalar product Let us consider two scalar quantities
φ∗γ and ψ∗γ. By employing equation 2.3.6, the superficial average of the scalar
product of the previously introduced φ∗γ and ψ∗γ can be written as:

〈φ∗γ ψ∗γ 〉 = 〈 〈φ∗γ 〉I 〈ψ
∗
γ 〉I 〉+ 〈 〈φ∗γ 〉I ψ̃γ 〉+ 〈 φ̃γ 〈ψ∗γ 〉I 〉+ 〈 φ̃γψ̃γ 〉

Since the intrinsic averages are constant over Ωγ, this can be rewritten as:

〈φ∗γ ψ∗γ 〉 = αγ 〈φ∗γ 〉I 〈ψ
∗
γ 〉I + 〈 〈φ∗γ 〉I 〉 〈 ψ̃γ 〉+ 〈 φ̃γ 〉 〈 〈ψ∗γ 〉I 〉+ 〈 φ̃γψ̃γ 〉
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By considering that the superficial average of the deviation vanishes and that
the intrinsic average and the superficial average are related by equation 2.3.5,
the following is obtained:

〈φ∗γ ψ∗γ 〉 =
1

αγ
〈φ∗γ 〉 〈ψ∗γ 〉+ 〈 φ̃γψ̃γ 〉

The final formulation of the superficial average of a scalar product thus includes
the superficial average of quantities which are essentially unknown, that are
the deviations φ̃γ and ψ̃γ. However, for a sufficiently small choice of Ω it is
reasonable to expect that the deviations will be significantly smaller than the
superficial averages [27] so that 〈 φ̃γψ̃γ 〉 � 〈φ∗γ 〉 〈ψ∗γ 〉. Thus:

〈φ∗γ ψ∗γ 〉 =
1

αγ
〈φ∗γ 〉 〈ψ∗γ 〉 (2.3.10)

while for the intrinsic average one has (equation 2.3.5):

〈φ∗γ ψ∗γ 〉I = αγ 〈φ∗γ 〉I 〈ψ
∗
γ 〉I (2.3.11)

Volume average of an inner or outer product Given two vector quan-
tities φ∗

γ and ψ∗
γ , the derivation shown in the previous paragraphs for scalar

quantities still holds true, so that:

〈φ∗
γ ·ψ∗

γ 〉 =
1

αγ
〈φ∗

γ 〉 · 〈ψ∗
γ 〉 (2.3.12)

〈φ∗
γ ·ψ∗

γ 〉I = αγ 〈φ∗
γ 〉I · 〈ψ

∗
γ 〉I (2.3.13)

〈φ∗
γ ⊗ψ∗

γ 〉 =
1

αγ
〈φ∗

γ 〉 ⊗ 〈ψ∗
γ 〉 (2.3.14)

〈φ∗
γ ⊗ψ∗

γ 〉I = αγ 〈φ∗
γ 〉I ⊗ 〈ψ

∗
γ 〉I (2.3.15)

Volume average of a spatial derivative As the final governing equation
for the generic quantity φ∗γ will be expressed in terms of either 〈φ∗γ 〉 or 〈φ∗γ 〉I ,
the goal of the present paragraphs is to reformulate the volume average of a
gradient or divergence of φ∗γ into the gradient or divergence of 〈φ∗γ 〉 or 〈φ∗γ 〉I .

The following derivation is conceptually the same in nature as those pre-
sented by Whitaker [25], Bear and Bachmat [28], yet it is revisited for com-
pleteness. Let us consider 〈∇φ∗γ 〉. The results obtained for this example can
be easily related to the other scenarios. By expanding the definition:

〈∇φ∗γ 〉 =
1

V

∫
Ωγ

∇φ∗γ dV (2.3.16)

20



By taking advantage of the Stokes theorem to describe the volume integral of
the gradient in terms of a surface integral over the boundary ∂Ωγ of Ωγ:∫

Ωγ

∇φ∗γ dV =

∫
∂Ωγ

φ∗γ n dS

with n being the surface normal on ∂Ωγ that is oriented outward from Ωγ.
It is recalled that Ωγ is a sub-domain of the larger averaging domain Ω that
is within phase γ. The boundary ∂Ωγ can be decomposed into two parts,
the boundary between the phase γ within Ωγ and the same phase outside Ωγ,
which is referred to as ∂Ωγγ, and the boundary between the phase γ within
Ωγ and the the other phases outside of Ωγ. For the time being, the discussion
is limited to a system of two phases, which are labelled as γ and ζ, so that the
latter boundary is denoted by ∂Ωγζ . These phases might be both fluids, or a
fluid and a structure phase. This is represented in Figure 2.3.2.

Figure 2.3.2: generic representation of two phases γ and ζ at the local or microscopic level.
Ω(x) represents a portion of the domain centered around x over which a certain average
quantity of the γ phase, 〈φ∗γ 〉 is computed. The domain Ω(x + ∆) represents an averaging
volume translated with respect to Ω(x) by an amount ∆. This can be used for the calculation
of ∇ 〈φ∗γ 〉. The boundary of Ωγ(x) ⊂ Ω(x) is decomposed into an intra-phase boundary
∂Ωγγ = ∂Ω+

γγ ∪∂Ω−γγ (the red and blue outlines of Ω(x)) and an inter-phase boundary ∂Ωγζ
(the bold black lines within Ω(x)) with ∂Ωγ = ∂Ωγγ ∪ ∂Ωγζ .
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The boundary integral can be thus expressed as:∫
∂Ωγ

φ∗γn dS =

∫
∂Ωγγ

φ∗γ n dS +

∫
∂Ωγζ

φ∗γ n dS

so that equation 2.3.16 becomes:

〈∇φ∗γ 〉 =
1

V

(∫
∂Ωγγ

φ∗γ n dS +

∫
∂Ωγζ

φ∗γ n dS

)
(2.3.17)

Let us focus our attention on the first surface integral on the right-hand side
(RHS) of equation 2.3.17. Particularly, it is now shown that ∇ 〈φ∗γ 〉, which is
hereby derived, is equivalent to it.

Let us start by computing the directional derivative ∇∆ 〈φ∗γ 〉 in a certain
direction represented by the unit vector e∆. From the definition of directional
derivative:

e∆ ·∇ 〈φ∗γ 〉 ≡ ∇∆ 〈φ∗γ 〉 = lim
∆→0

〈φ∗γ 〉 (x + ∆)− 〈φ∗γ 〉 (x)

∆
(2.3.18)

where 〈φ∗γ 〉 (x) is the average of φ∗γ as defined in equation 2.3.2 computed in
a domain Ω(x) that is centered on x. Please note that 〈φ∗γ 〉 (x) is continuous.
The vectors ∆ = ∆e∆ denote the increment vector of magnitude ∆. By
taking advantage of the definition of the superficial average in equation 2.3.2,
equation 2.3.18 can be expanded as:

lim
∆→0

〈φ∗γ 〉 (x + ∆)− 〈φ∗γ 〉 (x)

∆

= lim
∆→0

1

∆

(∫
Ωγ(x+∆)

φ∗γ dV −
∫

Ωγ(x)

φ∗γ dV

)
(2.3.19)

As the integrals in equation 2.3.19 both operate on the same quantity, have
opposite signs, and are performed over partially overlapping domains, the net
result consists in the integration of said quantity only over certain sub-domains
of the respective domains, so that

lim
∆→0

1

∆

(∫
Ωγ(x+∆)

φ∗γ dV −
∫

Ωγ(x)

φ∗γ dV

)

= lim
∆→0

1

∆

(∫
Ωγ(x+∆)\Ωγ(x)

φ∗γ dV −
∫

Ωγ(x)\Ωγ(x+∆)

φ∗γ dV

)
(2.3.20)

with Ωγ(x+∆)\Ωγ(x) representing the domain resulting from the subtraction
of Ωγ(x) from Ωγ(x + ∆), highlighted in a light shade of blue in Figure 2.3.2,
and Ωγ(x)\Ωγ(x+∆) representing the domain resulting from the subtraction
of Ωγ(x + ∆) from Ωγ(x), highlighted in a light shade of red in Figure 2.3.2.
In the considered limit of ∆ → 0 and with reference to the aforementioned
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figure, the volume differentials dV over Ωγ(x + ∆) \Ωγ(x) can be obtained by
extruding the infinitesimal surface dS defined over the boundary ∂Ω+

γγ in the
direction of ∆. Mathematically, this can be expressed as:

lim
∆→0

∫
Ωγ(x+∆)\Ωγ(x)

φ∗γ dV = lim
∆→0

∫
∂Ω+

γγ

φ∗γ ∆ · n dS (2.3.21)

where it is recalled n is the outward normal of ∂Ωγ at dS. With regard to
Ωγ(x) \ Ωγ(x + ∆), considering that the surface normal n on ∂Ω−γγ is always4
such that n ·∆ < 0, one can similarly find:

lim
∆→0

∫
Ωγ(x)\Ωγ(x+∆)

φ∗γ dV = − lim
∆→0

∫
∂Ω−γγ

φ∗γ ∆ · n dS (2.3.22)

By combining the results of equations 2.3.21, 2.3.22 with 2.3.20 and recalling
that ∆ = ∆e∆:

lim
∆→0

1

∆

(∫
Ωγ(x+∆)

φ∗γ dV −
∫

Ωγ(x)

φ∗γ dV

)

= lim
∆→0

1

∆

(∫
∂Ω+

γγ

φ∗γ ∆ · n dS +

∫
∂Ω−γγ

φ∗γ ∆ · n dS

)

= lim
∆→0

1

∆

(∫
∂Ωγγ

φ∗γ ∆ · n dS

)

= lim
∆→0

∆

∆
e∆ ·

(∫
∂Ωγγ

φ∗γ n dS

)

= e∆ ·

(∫
∂Ωγγ

φ∗γ n dS

)
(2.3.23)

where the fact that the sum of the surface integrals of the same quantity
over two separate sub-domains ∂Ω+

γγ and ∂Ω−γγ is equal to a single surface
integral of the same quantity of the domain resulting from their union, namely
∂Ωγγ = ∂Ω+

γγ ∪ ∂Ω−γγ, was taken advantage of. By combining the results of
equation 2.3.23 with 2.3.19, 2.3.18:

e∆ ·∇ 〈φ∗γ 〉 = e∆ ·

(
1

V

∫
∂Ωγγ

φ∗γ n dS

)
(2.3.24)

which implies:

∇ 〈φ∗γ 〉 =
1

V

∫
∂Ωγγ

φ∗γ n dS (2.3.25)

4While not explicitly stated so far, that is precisely how ∂Ω+
γγ and ∂Ω−γγ are defined,

namely ∂Ω+
γγ is that sub-domain of ∂Ωγγ such that n ·∆ > 0 and ∂Ω−γγ is that sub-domain

of ∂Ωγγ such that n ·∆ < 0
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Returning back to the original problem of interest, namely defining 〈∇φ∗γ 〉 in
relation to ∇ 〈φ∗γ 〉, by combining equations 2.3.25 and 2.3.17 the final result
is obtained:

〈∇φ∗γ 〉 = ∇ 〈φ∗γ 〉+
1

V

∫
∂Ωγζ

φ∗γ n dS (2.3.26)

By employing a very similar approach, the average gradient and divergence of
a tensor quantity φ∗

γ of order greater than zero (e.g. a vector) can be obtained
as:

〈∇φ∗
γ 〉 = ∇ 〈φ∗

γ 〉+
1

V

∫
∂Ωγζ

φ∗
γ ⊗ n dS (2.3.27)

〈∇ · φ∗
γ 〉 = ∇ · φ∗

γ +
1

V

∫
∂Ωγζ

φ∗
γ · n dS (2.3.28)

As stated earlier, while the governing equations at the coarse-mesh level are
obtained via a superficial average on a term-by-term basis, the final variables
of interest for which the coarse-mesh governing equations are solved will more
often than not be represented by the intrinsic averages of the fields of interest
rather than their superficial averages. It is thus useful to express e.g. 〈∇φ∗γ 〉
in terms of ∇ 〈φ∗γ 〉I . In virtue of equation 2.3.5 which relates a superficial
average to the intrinsic average, one has:

〈∇φ∗γ 〉 = αγ 〈∇φ∗γ 〉I = ∇
(
αγ 〈φ∗γ 〉I

)
+

1

V

∫
∂Ωγζ

φ∗γ n dS (2.3.29)

In form, this is also valid for the intrinsic average of equations 2.3.27, 2.3.28,
not reported for brevity. It is however clear from the form of these equations
that one requires a closure for the last term on the RHS of these relationships.
In particular, this term reformulates the local inter-phase interaction (which
takes place on the inter-phase boundary ∂Ωγζ) into a volumetric interaction
term “spread out” over Ω. The physical significance of this term and its mod-
elling is introduced in general terms in subsection 2.3.2 and further expanded
in chapter 3.

With specific regard to the average of a gradient, it is nonetheless possible
to reformulate equation 2.3.29 in terms of ∇ 〈φ∗γ 〉I with some approxima-
tions and with knowledge of the inter-phase boundary geometry ∂Ωγζ (which
is known e.g. for a system consisting of a fluid and a solid non-moving phase).
This formulation introduces the concept of tortuosity, a second order tensor
which is a geometrical property resulting exclusively from the distribution of
the phase of interest within the representative volume. Essentially, it quan-
tifies the fact that 〈∇φ∗γ 〉 and ∇ 〈φ∗γ 〉I are not necessarily parallel. By con-
sidering the example provided by a simple diffusion problem for a quantity
φ∗γ over a coarse-mesh, the concept of tortuosity thus quantifies how the spa-
tial arrangement of the phases distorts the lines along which φ∗γ diffuses with
respect to a single-phase scenario in which only γ is present in the domain.
While this concept is of limited to no practical applicability in a two-phase
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system with two fluid phases and no static structure phase (due to the possibly
ever-changing configuration of the phases within each averaging volume), it is
of significant importance when describing diffusion-dominated phenomena of
one-fluid-phase flows through structures treated via a coarse-mesh approach.
Remarks on how this can be extended to multi-fluid-phase flows through such
structures are presented later in subsection 3.2.5 in chapter 3, as it is shown
that this topic can be tied to the broader discussion of turbulence modelling.

Let us begin by calculating the superficial average of the indicator function
χ∗γ for a generic phase γ in a two-phase system. By taking advantage of the
definition of phase fraction αγ provided by equation 2.3.4 and considering that
it follows from the definition of χ∗γ in equation 2.3.3 that χ∗γ(x) = 1 ∀x ∈ ∂Ωγζ ,
one can use 2.3.26 to derive:

〈∇χ∗γ 〉 = ∇αγ +
1

V

∫
∂Ωγζ

n dS (2.3.30)

However, in virtue of the definition of χ∗γ, it follows that ∇χ∗γ(x) = 0 ∀x ∈ Ωγ,
so that 〈∇χ∗γ 〉I = 0 and consequently 〈∇χ∗γ 〉 = 0 due to equation 2.3.29.
Equation 2.3.30 can be thus used to relate the gradient of the phase fraction
to the spatial configuration of the inter-phase boundary in Ω:

∇αγ = − 1

V

∫
∂Ωγζ

n dS (2.3.31)

Taking advantage of equation 2.3.31 and taking advantage of the fact that
〈φ∗γ 〉I is constant within Ω, 2.3.29 can be expanded as follows:

〈∇φ∗γ 〉 = ∇
(
αγ 〈φ∗γ 〉I

)
+

1

V

∫
∂Ωγζ

φ∗γ n dS

= αγ∇ 〈φ∗γ 〉I + 〈φ∗γ 〉I ∇αγ +
1

V

∫
∂Ωγζ

φ∗γ n dS

= αγ∇ 〈φ∗γ 〉I −
1

V
〈φ∗γ 〉I

∫
∂Ωγζ

n dS +
1

V

∫
∂Ωγζ

φ∗γ n dS

= αγ∇ 〈φ∗γ 〉I +
1

V

∫
∂Ωγζ

φ̃γ n dS (2.3.32)

It is recalled that φ̃γ = φ∗γ − 〈φ∗γ 〉I is the deviation of 〈φ∗γ 〉I as defined in
equation 2.3.6. To further simplify equation 2.3.32, let us expand φ∗γ with a
first-order Taylor series around the centroid x0 of the averaging volume Ω:

φ∗γ(x) ≈ φ∗γ(x0) + ∇φ∗γ|x0 · (x− x0) (2.3.33)

where the centroid is defined geometrically as:

x0 =
1

V

∫
Ωγ

x dV (2.3.34)
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Precisely as x0 is the cell centroid, it is reasonable to assume that 〈φ∗γ 〉I and
〈∇φ∗γ 〉I = 1

αγ
〈∇φ∗γ 〉 are representative of φ∗γ(x0) and ∇φ∗γ|x0 respectively.

Thus, following from equation 2.3.33, the deviation can be approximated at a
first order as:

φ̃γ ≈
1

αγ
〈∇φ∗γ 〉 · (x− x0) (2.3.35)

By considering that 〈∇ 〉φ∗γ is a constant within Ωγ and that the following
identity (a · b) c = (c ⊗ b) · a holds true for any three vectors a, b, c, it is
easy to show that 2.3.32 becomes:

〈∇φ∗γ 〉 = αγ∇ 〈φ∗γ 〉I +
1

V

∫
∂Ωγζ

1

αγ
〈∇φ∗γ 〉 · (x− x0) n dS

= αγ∇ 〈φ∗γ 〉I +

(
1

Vγ

∫
∂Ωγζ

n⊗ (x− x0) dS

)
· 〈∇φ∗γ 〉

⇒ 〈∇φ∗γ 〉 = αγTγ∇ 〈φ∗γ 〉I (2.3.36)

in which the tortuosity tensor Tγ was defined as:

T−1
γ = I− 1

Vγ

∫
∂Ωγζ

n⊗ (x− x0) dS (2.3.37)

Please note that the tortuosity is only specific to a single phase γ and not to
a phase pair γ − ζ as the surface integral in equation 2.3.37 might seem to
imply. As a matter of fact, the derivation presented hereby holds in multi-
phase scenarios as well by considering that ∂Ωγζ consists of the boundary
between γ and all the other phases other than γ (i.e. by collectively denoting
all the other phases as ζ).

The result obtained in 2.3.37 is an extension of the tortuosity concept as
presented by Lehner [29], Whitaker [30] and Gray [31] all of whom reach ex-
pressions that correspond to 2.3.32 yet without further expanding the deviation
by taking advantage of a Taylor series. Due to this, the practical applicabil-
ity of their formulation is limited [30]. However, further work by Kim and
Whitaker employed a similar approach to the one adopted here [32], yet ar-
rived at an arguably more complex formulation by expanding φ∗γ(x) in terms
of ∇ 〈φ∗γ 〉I rather than the more natural 〈∇φ∗γ 〉. Finally, an approximation
of the tortuosity is proposed by Bear and Bachmat [28], which is more numer-
ically convenient when actually applying these expressions for calculating the
lattice tortuosity:

Tγ = 3
αSγ
αγ

1

Sγ

∫
∂Ωγγ

n⊗ n dS (2.3.38)

In which αSγ is the phase fraction at the boundary (i.e. the surface average of
χγ over ∂Ω), which might in principle differ from αSγ and Sγ is the total surface
of the intra-phase boundary ∂Ωγγ.
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Volume average of a time derivative In a similar way as to that pre-
sented for the derivation of the average of spatial derivatives, one can obtain
that the average of a time derivative of a quantity φ∗γ as:

〈 ∂
∂t
φ∗γ 〉 =

∂

∂t
〈φ∗γ 〉 −

1

V

∫
∂Ωγζ

φ∗γu
∗
∂ · n dS (2.3.39)

in which u∗∂ is the velocity of the interface. Similarly to what was discussed in
the previous paragraph, this can be expressed in terms of the time derivative
of the intrinsic average as:

〈 ∂
∂t
φ∗γ 〉 = αγ 〈

∂

∂t
φ∗γ 〉

I
=

∂

∂t

(
αγ 〈φ∗γ 〉I

)
− 1

V

∫
∂Ωγζ

φ∗γu
∗
∂ · n dS (2.3.40)

2.3.2 Volume average of a transport equation

For the sake of generality we now task ourselves with the construction of a
macroscopically-valid (i.e. coarse-mesh valid) transport equation for a generic
fluid quantity φ∗γ in a multi-phase context. The symbol ζ is now treated as
a generic phase index to represent any phase other than γ. No particular
assumptions are made on the nature of the individual phases, which might
be fluids or solids. It is important to recall that all of the results concerning
the volume average of different quantities and operators for a generic phase γ
presented in subsection 2.3.1 are equally valid in a multi-phase context. This
is easy to see by considering that what was denoted by ζ in that subsection
can be seen as the collection of all phases other than γ.

Let us start by considering the local transport equation for φ∗γ over an
advective field u∗γ, diffused by a flux J∗γ and affected by an additional body
source term b∗γ:

∂

∂t
φ∗γ + ∇ ·

(
u∗γφ

∗
γ

)
= ∇ · J∗γ + b∗γ (2.3.41)

If φ∗γ is a tensor quantity of order greater than zero, the advective term is
described as ∇ ·

(
u∗γ ⊗ φ∗

γ

)
. Furthermore, J∗γ will be a tensor quantity of an

order that is greater than that of φ∗γ by one. A macroscopic governing equation
is typically formulated in terms of the intrinsic average of φ∗γ, and for notation
simplicity it is referred to simply as φ, namely:

φγ ≡ 〈φ∗γ 〉I (2.3.42)

The same notation is applied to all other variables. To obtain the macroscopic
governing equation in a domain Ω of volume V , the superficial average of 2.3.41
needs to be taken. This amounts to a term-by-term superficial average. By
considering all of the results obtained in subsection 2.3.1 and by considering
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the notation introduced in 2.3.42:

〈 ∂
∂t
φ∗γ 〉 =

∂

∂t
(αγφγ)−

1

V

∑
ζ 6=γ

(∫
∂Ωγζ

φ∗γu
∗
∂ · n dS

)
(2.3.43)

〈∇ ·
(
u∗γφ

∗
γ

)
〉 = ∇ · (αγuγφγ) +

1

V

∑
ζ 6=γ

(∫
∂Ωγζ

φ∗γu
∗
γ · n dS

)
(2.3.44)

〈∇ · J∗γ 〉 = ∇ · (αJγ) +
1

V

∑
ζ 6=γ

(∫
∂Ωγζ

J∗γ · n dS

)
(2.3.45)

〈 b∗γ 〉 = αγbγ (2.3.46)

where it is recalled that n is the boundary normal oriented from γ towards ζ.
By taking advantage of these averages, the original transport equation can be
re-written as:
∂

∂t
(αγφγ) +∇ · (αγuγφγ) = ∇ · (αJγ) +αγbγ −

∑
ζ 6=γ

(bα,γ→ζ + bJ,γ→ζ) (2.3.47)

where the additional volumetric source terms are defined as:

bα,γ→ζ = − 1

V

∫
∂Ωγζ

φ∗γ
(
u∗∂ − u∗γ

)
· n dS (2.3.48)

bJ,γ→ζ = − 1

V

∫
∂Ωγζ

J∗γ · n dS (2.3.49)

For completeness, if φγ is a tensor quantity of an order greater than zero, the
governing macroscopic equation becomes:

∂

∂t
(αγφγ) + ∇ · (αγuγ ⊗ φγ) = ∇ · (αJγ) + αγbγ+

−
∑
ζ 6=γ

(bα,γ→ζ + bJ,γ→ζ)

(2.3.50)

with:

bα,γ→ζ = − 1

V

∫
∂Ωγζ

((
u∗∂ − u∗γ

)
⊗ φγ

)
n dS (2.3.51)

bJ,γ→ζ = − 1

V

∫
∂Ωγζ

J∗γ · n dS (2.3.52)

Formally, the macroscopic governing equation (2.3.47) and the locally govern-
ing one (2.3.41) are very similar if not for the presence of the phase fraction αγ
and the additional volumetric source terms bα,γ→ζ and bJ,γ→ζ . These quantify
the change of φ∗γ due to the interaction of phase γ with the other phases within
Ω. In particular, bα,γ→ζ represents the variation due to the appearance/dis-
appearance of phase γ (i.e. phase change), while bJ,γ→ζ is associated with the
diffusion of φ∗γ across the interface. These terms always require some form of
closure in a coarse-mesh context, as the local domain is never geometrically
resolved and knowledge of the microscopic fields is not available.
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2.3.3 Volume average of the Navier-Stokes equations

In order to bridge the theoretical framework presented so far with its imple-
mentation and application to the analysis of fluid flows, the general form of
the volume averaged Navier-Stokes equations for a generic system of a number
of fluid phases and a single solid, immovable phase is presented. The fluid
phase under consideration is denoted via the i subscript, while the variable
fluid phase index is j, and the structure phase index is s.

Mass conservation equation This governing equation, also known as the
continuity equation, consists of the transport equation (2.3.41) for the specific
mass (i.e. density) ρ∗i of the fluid under exam, with J∗i = 0 and b∗i = 0.
One might wonder why, in a generic multi-phase scenario, the local density
source term b∗i is zero, but that is justified by the fact that inter-phase mass
transfer physically takes place exclusively at phase boundaries, and that the
local microscopic balance equations hold true only within a volume where one
phase is present. As by definition no inter-phase boundaries are presented in
such volume, the local density source term is necessarily zero. However, at
a macroscopic level, the mass transfer terms appears as a consequence of the
averaging procedure. By substituting the relevant quantities in the volume-
averaged transport equation 2.3.47, the macroscopic continuity equation for
fluid i becomes:

∂

∂t
(αiρi) + ∇ · (αiuiρi) = −

∑
j 6=i

Γi→j (2.3.53)

In which the inter-phase specific mass transfer Γi→j was introduced, equivalent
to bα,i→j as defined in 2.3.48, namely:

Γi→j = − 1

V

∫
∂Ωij

ρ∗i (u∗∂ − u∗i ) · n dS (2.3.54)

On top of this, we impose the additional physically-motivated constraint that
Γi→j = −Γj→i. The mass transfer term is typically modelled on the basis of
thermal considerations, as it is discussed in chapter 3. Please note that as
the phase indices for bα,γ→ζ in equation 2.3.47 span all the phases, regardless
of them being fluids or solids, the term Γi→s should be present as well in the
macroscopic continuity equation. However, as long as the fluid and the solid
do not belong to the same chemical species and no phase change is possible,
the no-slip condition always holds at a fluid-solid boundary (within the limits
of the continuum hypothesis, which is assumed valid throughout this work),
so that u∂ = ui at the ∂Ωis boundary and Γi→s = 0.

Momentum conservation equation This equation is equivalent to the
transport of the specific momentum of a phase. Its microscopic formulation
follows from equation 2.3.41 with φ∗i = ρ∗iu

∗
i the volumetric momentum, J∗i =
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σ∗i the fluid stress tensor, and b∗i = ρ∗ig the gravitational acceleration. Only
Newtonian fluids are considered in this work, and by the Stokes hypothesis
the local stress tensor is expressed as:

σ∗i = −p∗I + σ∗d,i (2.3.55)

σ∗d,i = µ∗i

(
∇u∗i + (∇u∗i )

T − 2

3
(∇ · u∗i )I

)
(2.3.56)

where σ∗d,i is the deviatoric component of the stress tensor and µ∗i is the molec-
ular viscosity of the fluid. The formulation of the stress tensor provided above
assumes that all the phases in the system share a single pressure p, which is a
widespread assumption when dealing with dispersed multiphase flows. Under
this assumption it is also reasonable to assume that p ≡ 〈 p∗ 〉I ≈ p∗. Then,
it can be shown by employing the tools developed in 2.3.1 that the volume
average of the divergence of the stress tensor is:

〈∇ · σ∗i 〉 = −αi∇p+ ∇ · (αiσd,i) +
1

V

∑
j 6=i

(∫
∂Ωij

σd,i · n dS

)
(2.3.57)

σd,i ≡ 〈σ∗d,i 〉I = µ∗iTγ ·
(
∇ui + (∇ui)

T − 2

3
(∇ · ui)I

)
(2.3.58)

By substituting the relevant quantities in the general macroscopic transport
equation 2.3.41 and taking advantage of the formulations of the volume aver-
aged stress tensor presented in 2.3.57 the momentum transport equation can
be formulated as:

∂

∂t
(αiρiui) + ∇ · (αiρiui ⊗ ui) =− αi∇p+ ∇ · (αiσd,i) + αiρig+

−
∑
j 6=i

(Mα,i→j + Mσd,i→j) +

−Mα,i→s −Mσd,i→s (2.3.59)

The additional source terms M are related to the inter-phase momentum trans-
fer. This can occur either due to phase change (represented by the Mα terms)
or due to momentum diffusion across the interface (represented by the Mσd

terms). The contributions indexed via i→ j denote the exchange exclusively
from the fluid phase to another fluid phase, while i→ s denotes the exchange
from the fluid phase to the solid phase (i.e. the structure).

The term Mα,i→s is equivalent to 2.3.51 with φ∗i = ρ∗iu
∗
i . However, due

to the same considerations regarding the local no-slip condition between fluid
and structure made when discussing the continuity equation, this term is null,
so that Mα,i→s = 0. The term Mα,i→j can be further simplified by assuming
that ui ≡ 〈u∗i 〉I ≈ u∗i . Recalling the definition of the mass transfer term in
2.3.54, it can be shown that:

Mα,i→j ≈ Γ+
i→jui − Γ−i→juj (2.3.60)
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with the +, − superscripts denoting the positive, negative parts of Γi→j re-
spectively. It is clear from this formulation that the Mα,i→j terms account for
the momentum transfer from the i-th to the j-th phase due to mass transfer,
which is positive if phase i transfers net momentum to phase j.

The term Mσd,i→s quantifies the diffusive transport of momentum from the
fluid to the structure, which more informally can be described as the friction
between the fluid and the structure and is defined as in 2.3.52 with J∗i = σ∗d,i.
This term needs to be treated via experimental correlations depending on the
fluid and case geometry under exam, and is further discussed in chapter 3.

The term Mσd,i→j is associated with the diffusive momentum transport
across a fluid-fluid interface, yet it cannot in principle be described exclusively
in terms of friction between phases, due to the fact that said interfacial bound-
ary, unlike that between a fluid and the structure, is movable. In the most
general case, this term can be interpreted as the collection of the experimen-
tally observed forces that affect a generic fluid phase in a multi-phase flow,
ranging from friction-proper to the lift force (which arises from velocity gradi-
ents within the continuous phase and is thus tied to the continuous fluid devi-
atoric stress tensor, which Mσd,i→j depends on), surface tension, virtual mass
et cetera. For simplicity, as all the phase change-related momentum transfer
terms have been simplified, the subscript σd is removed from the remaining dif-
fusion related terms Mσd,i→j for notation simplicity so that Mi→j ≡Mσd,i→j.
The coupled system of the macroscopic Navier-Stokes equations can be thus
summarized as:

∂
∂t

(αiρi) + ∇ · (αiuiρi) = −
∑

j 6=i Γi→j

∂
∂t

(αiρiui) + ∇ · (αiρiui ⊗ ui) =

−αi∇p+ ∇ · (αiσd,i) + αiρig+

−
∑

j 6=i
(
Γ+
i→jui − Γ−i→juj + Mi→j

)
−Mi→s

(2.3.61)

Further discussion on the way that Mi→s, Mi→j are modelled is presented in
chapter 3.

2.3.4 Volume averaged enthalpy transport equation

To fully describe a fluid flow from a thermal-hydraulics perspective it is also
necessary to simulate the evolution and transport of fluid enthalpy, represented
by its specific enthalpy h∗i . Its microscopic formulation follows from equation
2.3.41 with φ∗i = ρ∗ih

∗
i the volumetric enthalpy, J∗i = κ∗i∇T ∗i the diffusion

heat flux with T ∗i the fluid temperature, and b∗i = ∂
∂t
p∗ + ρ∗iu

∗
i · g + q∗int,i the

volumetric heat source due to the pressure work term, the gravitational work
term an a possible volumetric heat source intrinsic to the fluid e.g. molten salt
fuel in Molten Salt Reactors (MSRs).
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By taking advantage of the coarse-mesh formulation of the general trans-
port equation in 2.3.47 and considering the notation introduced in 2.3.42, the
macroscopic enthalpy transport equation is obtained as:

∂

∂t
(αiρihi) + ∇ · (αiuiρihi) = ∇ · (αiκiTi∇Ti) + αi

∂

∂t
p+ αiρiui · g+

+ αiqint,i −
∑
j 6=i

(qα,i→j + qκ,i→j)− qα,i→s+

− qκ,i→s −
1

V

∫
∂Ωij

p∗u∗∂ · n dS

(2.3.62)

The last term on the RHS comes from the volume average of the pressure
work term ∂

∂t
p∗ and can be typically neglected owing to the fact that, for the

vast majority of fluids of interest for nuclear applications, at nuclear operating
pressures (i.e. in the 1− 160 atm range) one has p∗ � ρ∗ih

∗
i .

As seen when discussing the momentum equation, the terms qα, qκ rep-
resent the inter-phase heat transfer terms associated with phase change and
diffusive heat conduction respectively. The fluid-structure heat transfer term
associated with phase change qα,i→s is null for the same reasons discussed in
the previous subsection. The phase change-related enthalpy source term qα,i→j
is equivalent to bα,i→j in 2.3.48 with φ∗i = ρ∗ih

∗
i . Somewhat similarly to, but

not exactly the same as the momentum transfer term Mσd,i→j, this term can
be modelled as:

qα,i→j = Γi→jhi (2.3.63)

Please note that this formulation entails qα,i→j 6= −qα,j→i. What is conserved
instead is the overall heat transfer due to both phase change and diffusive
processes between the phases, namely qα,i→j + qκ,i→j = − (qα,j→i + qκ,j→i).
This is subject to further discussion in section 3.2.3 in chapter 3. For clarity,
if phases i and j do not belong to the same chemical species no phase transfer is
possible, Γi→j = 0 by definition and the phase change-related enthalpy transfer
term is null.

With regard to the diffusive enthalpy transfer terms qκ,i→s, qκ,i→j, those
are defined as in equation 2.3.49 with J∗i = κ∗i∇T ∗i . These terms are modelled
via experimental correlations that are discussed in chapter 3. As all the phase
change-related enthalpy transfer terms have been simplified, the subscript κ is
omitted from the diffusion-related inter-phase transfer terms, so that qi→j ≡
qκ,i→j. The macroscopic enthalpy conservation equation for the i-th phase can
be thus written as:

∂

∂t
(αiρihi) + ∇ · (αiuiρihi) = ∇ · (αiκiTi ·∇Ti) + αi

∂

∂t
p+ αiρiui · g+

+ αiqint,i −
∑
j 6=i

(Γi→jhi + qi→j)− qi→s

(2.3.64)
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Further modelling aspects related to the treatment of the phase-change depen-
dent terms and the diffusive inter-phase transfer terms qi→j, qi→s are discussed
in chapter 3.

2.4 Clarifications and conclusive remarks

2.4.1 Remarks on the relationship between the coarse-
mesh approach and an Euler-Euler approach

It is recognized that equations 2.3.61 and 2.3.64 are formally equivalent to
those formulated by an Euler-Euler approach for the modelling of multi-phase
flows. This formal equivalence stems from the utilization of volume averaging
techniques, which are at the core of both methods. The key difference lies
however at the geometric scale of interest.

A coarse-mesh approach is fundamentally intended for the investigation of
one-fluid-phase or possibly multi-fluid-phase flows through a complex structure
of interest whose geometric details lie below the geometric scale of interest,
so that volume averaging techniques are applied over RVs (and thus their
constituent mesh cells) that are significantly coarser than said details.

An Euler-Euler approach, in its general formulation, is obtained via the
application of the same volume averaging techniques over any possible com-
putational domain of interest (i.e. cell-by-cell) with no specific limitations on
the size of the mesh cells and thus no limitation on the details that can be
resolved. For this reason, a coarse-mesh approach is equivalent to a dispersed
Euler-Euler approach, wherein by dispersed one means that the details of the
phase geometry and phase interfaces (both fluid-fluid and fluid-structure) are
not explicitly geometrically resolved, rather, treated with other approaches
(e.g. interfacial area transport methods in combination with other models for
the treatment of characteristic phase dimensions).

Ultimately, the difference in how the formally identical equations are used
in e.g. a coarse-mesh context against e.g. a fine-mesh Euler-Euler context lies
entirely in how the inter-phase mass Γj→i, momentum Mj→i and heat transfer
qj→i terms are modelled.

2.4.2 Remarks on the relationship between the coarse-
mesh approach and the FVM

This section has discussed how the coarse-mesh approach is used in the context
of a generic multiphase system to transform microscopic quantities, mathemat-
ical operators and equations, i.e. that hold within an infinitesimal volume of
a single-phase, into their macroscopic equivalent, i.e. into a volume-averaged
equivalent that holds over a certain sub-domain Ω of the domain of inter-
est that might encompass a variety of phases. In particular, starting from a
generic microscopic transport equation, equation 2.3.41, the averaging tools
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have been used to derive the macroscopic Navier-Stokes and enthalpy conser-
vation equations governing fluid-flow, namely equations 2.3.61, 2.3.64. Exten-
sive discussion of the modelling for the closure of mass, momentum and heat
inter-phase transfer terms is made in chapter 3.

As both the FVM and and the coarse-mesh approach have been discussed
from a general perspective in this chapter, it is convenient to reassert the
fundamental differences between these two methods. This is not necessarily
trivial as both approaches involve volume averages to manipulate a set of
governing equations, to the point where the reader might be left wondering
what is the purpose of each method compared to the other.

The coarse-mesh approach is used to construct a mathematical model that
is representative of some fundamental governing equations in a multi-phase
context at a spatial scale that is coarser than that at which the microscopic
governing equations actually hold true. The FVM is instead used to construct
a numerical representation of a given mathematical model of interest (e.g. the
set of PDEs representing the coarse-mesh Navier-Stokes and enthalpy con-
servation equations), namely something that can be numerically treated and
solved.

As a final example for clarification purposes, the operations that are re-
quired to obtain a numerical representation of e.g. the enthalpy equation that
governs the thermal behaviour of a fluid in a complex engineering structure
are presented:

• definition of the relevant RVs over the geometry for the calculation of the
structure macroscopic quantities (i.e. volume fractions, interfacial areas,
tortuosities);

• construction of the computational domain over the RVs by subdividing
them into computational cells (i.e. meshing);

• application of the coarse-mesh methodology tools to obtain the macro-
scopic enthalpy equation (for this example, this consists of 2.3.64) that
is valid within each RV (and by extension, withing the mesh cells within
each RV);

• application of the FVM to the coarse-mesh enthalpy equation (i.e. the
actual governing equation over the geometry at the scale of interest)
within each mesh cell of each RV to obtain a linear system representa-
tive of the governing equation, which can then be solved with adequate
techniques, not presently discussed due to the vastness of the topic [33].

Please note that all the macroscopic enthalpy equations that hold within each
RV are identically in form to one another, except for the coarse-mesh param-
eters that overtly figure in 2.3.64, namely the fluid phase fraction α and the
tortuosity tensor T . Thus, a single coarse-mesh enthalpy equation holds over
the entirety of the computational domain as long as these additional coarse-
mesh parameters are modelled as fields whose values vary cell-by-cell based
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on which RV the cell belongs to. Additional coarse-mesh parameters, such as
the structure volumetric surface area density (and hydraulic diameter, which
can generally be related to the volumetric surface area density) generally fig-
ure in the specific correlations for the closure of the momentum and heat
transfer terms introduced in the previous subsection, that are discussed more
thoroughly in chapter 3.
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Chapter 3

Algorithms and implementation

3.1 Introduction
The previous chapter has discussed how the coarse-mesh methodology is used
to obtain the macroscopic set of equations governing some aspects of fluid flow
for each fluid phase in a multi-phase system. The coarse-mesh Navier-Stokes
and the enthalpy conservation equations were derived, which are recalled for
clarity:

∂

∂t
(αiρi) + ∇ · (αiuiρi) = −

∑
j 6=i

Γi→j (3.1.1)

∂

∂t
(αiρiui) + ∇ · (αiρiui ⊗ ui) =

− αi∇p+ ∇ · (αiσd,i) + αiρig+

−
∑
j 6=i

(
Γ+
i→jui − Γ−i→juj + Mi→j

)
−Mi→s (3.1.2)

∂

∂t
(αiρihi) + ∇ · (αiuiρihi) =

∇ · (αiκiTi ·∇Ti) + αi
∂

∂t
p+ αiρiui · g + αiqint,i+

−
∑
j 6=i

(Γi→jhi + qi→j)− qi→s (3.1.3)

This chapter is dedicated to the description of the modelling approaches and
numerical solution algorithms that were developed and employed in this work
for the treatment of the coupled system represented by equations 3.1.1, 3.1.2,
3.1.3. In practice, discussing the present thermal-hydraulic approach amounts
to discussing the computer code that has been developed which implements
said approach.

The computer code is based on the OpenFOAM numerical library and is
capable of modelling one-fluid-phase and two-fluid-phase flows through struc-
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tures via the coarse-mesh approach as discussed previously. It consists of two
independent sub-solvers, one for one-fluid-phase flows and one for two-fluid
phase flows. This was done exclusively for computational efficiency as the
two-phase sub-solver contains additional elements that represent unnecessary
overheads for the simulation of one-phase flows. Nonetheless, the two sub-
solvers share a single implementation of the same modelling approach, as it
will be discussed. The code has been ultimately integrated in the GeN-Foam
multi-physics code replacing its original thermal-hydraulics approach, and will
be occasionally referred to via its internal name, FFSEulerFoam, with FFS
standing for “Fluid-Fluid-Structure”, referring to its coarse-mesh, generally
two-fluid-phase vocation.

Section 3.2 covers the modelling framework, more specifically regarding
the closure terms introduced so far as well as some further important mod-
elling aspects, ranging from the modelling of the structure thermal behaviour
to turbulence modelling. Section 3.3 discusses the solution algorithms for the
system of governing equations represented by 3.1.1, 3.1.2, 3.1.3 for the one
and two-phase approaches. This is inclusive of a presentation of further al-
gorithm improvements with respect to standard two-phase thermal-hydraulic
approaches in OpenFOAM. Sections 3.4, 3.5 present the verification and as-
sessment of the performance of a novel approach for treating pressure-velocity
coupling in two-fluid-phase flows, compared against existing approaches found
in other OpenFOAM-based solvers. Section 3.6 presents the overall parallel
scalability performance of the solution algorithm.

3.2 Modelling
The present section expands upon the modelling elements required for the
closure of the governing thermal-hydraulic equations. As the modelling frame-
work is shared between the one-phase and two-phase sub-solvers (i.e. all the
one-phase models are a special case of the two-phase ones), the discussion will
focus on the broader case of two fluid phases. These will be labelled as i and
j for consistency with the previous chapter, yet it should be noted that all the
summations terms of the inter-phase transfer terms in the governing equations
3.1.1, 3.1.2, 3.1.3 give way to a single inter-phase transfer term (for the only
possible fluid-pair that exists in a two-phase system).

An overview of the modelling framework is provided in Figure 3.2.1, inclu-
sive of the variables that are set/controlled by each model.
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Figure 3.2.1: Logical representation of the modelling components of the code and their hier-
archical dependency. Black labels represent the main logical subdivisions of the modelling:
1) structure-related models; 2) fluid-related models; 3) Phase interaction-related models.
The main variables that are handled by each model are reported to the right of each en-
try. Numbers in brackets mean the number of models of that kind required to describe the
two-phase system.

3.2.1 Flow regime map

In principle, all of the transfer terms Mi→j,s, qi→j,s are to be formulated in
terms of quantities that can be modelled via experimental correlations. How-
ever, the generic form of these correlations will typically vary for various flow
configurations or flow regimes, both in one-phase and two-phase conditions.

Let us consider an example for one-phase flows, where different correla-
tions for e.g. the laminar and turbulent flow regimes exist. Let us consider the
Darcy friction factor fd (i.e. drag coefficient) and the heat transfer coefficient
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H for a fluid flow in a circular pipe. In the laminar regime, the friction factor
can be analytically shown to be fd = 64/Re, with Re being the Reynolds
number of the flow. In turbulent regimes, a good approximation is repre-
sented by the Blasius correlation fd = 0.316/Re0.25. With regards to the heat
transfer coefficient, it can be computed starting from the Nusselt number. In
developed laminar pipe flows, it is best represented by a constant value. In
developed turbulent pipe flows, it can be modelled e.g. via the Dittus-Boelter
correlation, Nu = 0.023 Re0.8Pr0.4, with Pr being the Prandtl number of the
fluid. Clearly, to be able to compute the value of the drag and heat transfer
coefficients in each cell, one first needs to be able to identify the predominance
of one or the other flow regime in each mesh cell via certain criteria, so to
ascertain which correlation to use. For the specific example at hand, this cri-
terion is represented by the value of the Reynolds number. For each cell, if the
Reynolds value is below a certain threshold, a laminar regime will be assumed
to dominate, while above another threshold (not necessarily coinciding with
the first threshold), a turbulent regime will be assumed to dominate. Thus,
via a cell-by-cell knowledge of the dominant regime type, the correlation for
each quantity of interest can be chosen accordingly for each cell.

These quantities are typically set (not only in the present computer code
but more generally in the domain of computer codes for nuclear applications
[6]) via computer subroutines which we will refer to as models, each responsible
for the management of a different quantity (drag, heat transfer coefficient,
etc.).

There are fundamentally two ways to treat the regime dependence. The
first and simplest approach would be to implement the flow regime map within
each model individually. The principal drawback of this approach is the added
computational cost associated with the re-evaluation of the same flow regime
map if multiple models happen to depend on the same one, such as in the
aforementioned example. The second approach would be to implement a flow
regime map as a separate model that determines the flow regime information
for each cell once per iteration or time-step and that acts as a “container”
for all the flow-regime dependent models, with these models implementing no
flow regime-dependence themselves. In this case, it would be the flow regime
map itself that ultimately constructs the fields representative of the models
it manages (e.g. drag, heat transfer coefficient, etc.) based on the cell-by-cell
flow regime information. This approach is potentially more computationally
efficient than the first one, as it only needs to evaluate the flow regime map once
per iteration/time-step. However, it is generally more complex to implement
and has an advantage only if multiple models rely on the same flow regime map,
which is not necessarily always the case. An example of this is represented by
e.g. the heat transfer coefficient between a liquid and a pipe wall in boiling
scenarios, for which different correlations will need to be used depending on
more than a single parameter (e.g. wall and fluid temperature, vapour phase
mass flux, etc.).

Scenarios of in which different models share the same flow regime map were
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deemed frequent enough that support for such a feature was implemented in
the code. The maps are currently parametrizable with respect to a single
code variable of choice (e.g. the volume fraction of one of the two phases, the
Reynolds number, etc.). Interpolation regimes are created automatically if
the parameter bounds provided for each flow regime mismatch. For clarity,
an example is made. Let us consider a flow regime map parametrized with
respect to a generic code variable x, and let us consider two regimes, labelled
1 and 2, with bounds x1, lo, x1, hi and x2, lo, x2, hi respectively. For a given
variable of interest y that is to be modelled in a regime-dependent way (e.g.
a heat transfer coefficient), so that flow regime 1 would evaluate y as y1 and
flow regime 2 as y2, y will be set on a cell-by-cell basis as:

y =


y1 x1, lo ≤ x < x1, hi

yi x1, hi ≤ x < x2, lo

y2 x2, lo ≤ x < x2, hi

with yi being either a linearly or quadratically interpolated value between the
two values predicted by the models prescribed for each of the two flow regimes.

The possibility to hard-code a flow regime map dependence in each model
still exists, and the presented flow regime map mechanism is to be viewed as
an added benefit that can be taken advantage of in certain situations. Figure
3.2.1 highlights which models are treatable via flow regime maps and which
are not.

3.2.2 Momentum transfer closure

Fluid-structure momentum transfer It is recalled that the momentum
transfer term Mi→s in 3.1.2 consists microscopically of the diffusive transfer
of momentum across the fluid-structure interface, which is macroscopically
interpreted as a frictional pressure loss of the fluid, so that:

Mi→s ≡ −∇p

∣∣∣∣i
fric

(3.2.1)

For the i-th fluid, this is modelled as [6]:

Mi→s = Kis · ui (3.2.2)

In which Kis is the fluid-structure drag factor, a dimensioned order-2 tensor
not to be confused with the dimensionless fluid-structure drag coefficient fd,is.
To simplify the discussion, the relationship between these two quantities is
introduced first in the context of a one-phase flow in an isotropic structure.
By isotropic it is meant precisely that, regardless of the direction in which a
pressure gradient is applied at the boundaries of the system containing the
isotropic structure, the resulting fluid flow through the structure and the pres-
sure gradient are always anti-parallel. The phase label i is replaced with 1p
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to indicate that these relations are valid in single-phase only. The frictional
pressure drop is modelled via the Darcy-Weisbach equation [34]:

∇p

∣∣∣∣1p
fric

= −(1− αs)
1

2Dh

ρ1p|u1p|fd,s(Re1p,s)u1p (3.2.3)

where αs = 1−α1p is the structure phase fraction, Dh is the hydraulic diameter
of the structure, fd,s is the one-phase Darcy-Weisbach drag coefficient, which
will be referred to just as the drag coefficient, and it generally depends on
the one-phase Reynolds number Re1p,s. As a clarification, u1p is the real fluid
velocity, not the superficial one. The additional term (1 − αs) re-scales the
frictional pressure gradient (which is dimensionally equal to a momentum loss
per unit time, per unit volume) exclusively over the fraction of the cell volume
effectively occupied by the fluid. With regards to the Reynolds number for
the fluid-structure system, this is defined as:

Re1p,s =
Dh|u1p|
ν1p

(3.2.4)

with ν1p being the kinematic viscosity of the fluid. The drag coefficient is
case-dependent and should be chosen accordingly, depending on the geometry
of interest. Specific correlations for its modelling will be discussed alongside
the application of the present methodology, in chapters 4, 5. By considering
equations 3.2.1 through 3.2.3, in a one-phase scenario the drag factor thus
reduces to:

K1p,s ≡ IK1p,s = I(1− αs)
1

2Dh

ρ1p|u1p|fd,s(Re1p,s) (3.2.5)

with I the identity tensor. One might wonder, at this point, what is the neces-
sity to describe this quantity with a second-order tensor, given its scalar na-
ture. The reason is that, while this example considered specifically an isotropic
structure for the sake of introducing the fundamental connection between the
mathematical model behind the momentum source Ms→1p and the experimen-
tal approach based on the Darcy-Weisbach equation, for the case of a generally
anisotropic structure (e.g. a pin bundle) the frictional pressure drop experience
by the flow will generally depend on the flow direction.

The general approach for modelling this phenomenon is to construct a drag
tensorK1p,s with different correlations for the drag coefficient for different ten-
sor components. This is fundamentally the same as the approach commonly
used in sub-channel codes [7], where the fluid-structure drag is typically sep-
arated in a component along e.g. the pin bundle and a component transverse
to it, with the use of different correlations for each of the so-called principal
directions. As it is generally always possible to define a local reference frame
in which K1p,s is diagonal, this amounts to:

K1p,s =
∑
k

(1− αs)
1

2Dh

ρ1pu1p,kfd,s,k(Re1p,s) ek ⊗ ek (3.2.6)
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in which ek is the k-th basis vector for the k-th direction, u1p,k is the k-th
velocity component and fd,s,k is the drag coefficient for said direction.

The approach presented in 3.2.6 is only valid for one-phase flows, as in
a two-phase scenario the frictional pressure drop experienced by each of the
two fluids due to the structure cannot be computed solely via this approach.
Let us thus tackle the two-phase pressure drop modelling starting form some
specific phenomenological considerations that will be generalized.

Let us consider the frictional pressure drop experienced by fluid flow in
e.g. a pipe of a certain length L. The one-phase fluid velocity is proportional
to the mass flow rate as ṁ1p ∝ ρ1p|u1p|. For the specific case at hand, the
Blasius friction factor for turbulent pipe flows would have f1p,s ∝ Re−0.25, so
that by considering 3.2.3, 3.2.4, ∆pfric = |∇pfric|L ∝ |u1p|1.75. In general,
without specifications on the flow type or geometry, one can generally expect
∆pfric ∝ |u1p|1−2.

An example of the dependence of frictional pressure drop on mass flow rate
is presented in Figure 3.2.2.

Figure 3.2.2: General dependence of the pressure drop over e.g. a tube for varying levels
of inlet mass flow rate ([ṁ] = kg/s) and different states of matter of the flowing chemical
specie under consideration. The pressure drop for a purely liquid phase of certain chemical
species is typically much smaller than the pressure drop for the vapour phase, owing to the
much larger velocity of the vapour phase at the same mass flow rate.

If the liquid and vapour phases of a chemical specie of interest are taken into
consideration, for any given mass flow rate the resulting pressure drop for a
one-phase liquid flow would be much smaller than the corresponding pressure
drop for a one-phase vapour flow, owing to the much smaller vapour density
and thus higher vapour velocity. For any particular circumstance that would
cause the one-phase flow to transition to a two-phase flow (e.g. boiling or
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condensation), the resulting total frictional pressure drop of the flow mixture
will be somewhere in between the one-phase pressure drops of the individual
phase flows. Figure 3.2.2 represents this via the specific example of a fluid flow
through a heated tube such that the wall heat flux is constant. By starting at
a sufficiently high mass flow rate, the flow stays liquid throughout the length
of the tube. For decreasing mass flow rates, the enthalpy removal will not be
sufficient to prevent the liquid from reaching saturation, and below a certain
mass flow rate boiling occurs. Conversely, for sufficiently small inlet mass
flows, all of the liquid undergoes phase change and the pressure drop-mass
flow rate relationship is that of one-phase vapour flow. Thus, in the two-phase
regime, the pressure drop-mass flow rate relationship must be such to link the
two one-phase profiles in some way. From an experimental perspective, the
global mixture two-phase pressure drop can be measured directly. The way in
which this is modelled and connected to the individual phase drag factors Kis

is discussed.
A generic two-phase flow through a structure of interest is now considered.

The overall frictional pressure gradient experienced by the two-phase mixture
can be expressed in terms of a superficial frictional pressure gradient experi-
enced by one phase, adjusted by a two-phase pressure drop multiplier φ2

i , so
that:

∇p

∣∣∣∣tot
fric

= φ2
i ∇p

∣∣∣∣i
fric,sup

(3.2.7)

While the theoretical framework of two-phase multipliers was developed for 1-
D flow analyses, it is here applied to all components of the frictional pressure
gradient in a generic 3-D flow configuration, for lack of a more meaningful
alternative, as highlighted by other computer codes with a similar domain of
applicability (e.g. the sub-channel code SABENA [11]).

The superficial frictional pressure gradient ∇p|ifric,sup can be defined in two
different ways. With reference to a 1-D flow for simplicity, it is the frictional
pressure gradient that the i-th phase would experience if it occupied the en-
tirety of the flow-available cross-sectional area either with: 1) a mass flux equal
to its real mass flux Gi in the two-phase scenario; or 2) a mass flux equal to
the total mixture mass flux Gtot. These two different definitions of the super-
ficial frictional pressure gradient lead to different definitions of the two-phase
multiplier. Within the scope of this computer code, the first definition is used,
as it is the one used by many established two-phase pressure drop multiplier
correlations [35] (e.g. Lockhart-Martinelli). As a clarification:

Gi = ṁiS = |αiρiui| (3.2.8)

Gtot = G1 +G2 (3.2.9)

The phase fraction term αi quantifies the actual fluid volume whose flow con-
tributes to the mass flux in each computational cell. Note that this vol-
ume fraction takes into consideration the presence of the structure within
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each cell (e.g. if the two-phase flow is taking place in a pin bundle), so that
α1 +α2 +αs = 1. For the sake of convenience, a normalized fluid phase fraction
is introduced as:

αNi =
αi

1− αs
(3.2.10)

A disambiguation on the term “superficial” could prove useful to solve possible
misunderstandings of upcoming discussions. In the coarse-mesh methodology
said term describes a fluid quantity that has been averaged over the entire
averaging volume (i.e. inclusive of the structure volume within the averaging
volume), rather than only the fluid volume within the averaging volume (e.g.
recall the definition 2.3.2). In that sense, a superficial velocity is related to
the intrinsic velocity as ui,sup = αiui. In this context however, the term
“superficial” is used to describe a fluid quantity that has been averaged over
the volume that is available for fluid flow within the averaging volume, i.e.
the total volume occupied by all fluid phases, which is complementary to the
total volume occupied by the structure. Thus:

ui,sup = αNi ui (3.2.11)

Returning onto the problem at hand, the frictional pressure drop can be cal-
culated as (recall 3.2.1, 3.2.2):

∇p

∣∣∣∣i
fric,sup

= Kis,sup · (αNi ui) (3.2.12)

with αNi ui being the superficial velocity, Kis,sup being a drag factor that we
will refer to as superficial drag factor, which can be defined in the same way
as for the one-phase scenario in 3.2.6, except that the superficial velocity is
used in place of the intrinsic one and the friction factor is calculated with the
superficial Reynolds defined as:

Reis,sup =
Dh|αNi ui|

νi
(3.2.13)

so that:

Kis,sup =
∑
k

(1− αs)
1

2Dh

ρiα
N
i ui,kfd,s,k(Reis,sup) ek ⊗ ek (3.2.14)

Returning to the point at issue, it is recalled that the actual frictional pressure
gradient experienced by the i-th phase is (equations 3.2.1, 3.2.2):

∇p

∣∣∣∣i
fric

= Kis · ui (3.2.15)

The two-phase multiplier approach is connected to the frictional pressure gra-
dient in the form of Kis · ui by relating it to the total mixture pressure gra-
dient. Assuming that the total pressure gradient is partitioned between the
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two phases according to a fluid-structure contact fraction fA′′′s ,i, the following
holds:

Kis · ui = fA′′′s ,i ∇p

∣∣∣∣tot
fric

(3.2.16)

The contact fraction fA′′′s ,i quantifies the fraction the structure surface area
that is contacted by fluid i. If the fluid that was used as the basis for the
calculation of the total pressure drop as described in 3.2.7 is labelled by M ,
by combining 3.2.16 with 3.2.7 and by combining the resulting equation with
3.2.12, Kis can finally be calculated as:

Kis = fA′′′s ,i α
N
M φ2

M KMs,sup
|uM |
|ui|

(3.2.17)

It is important to state that in the derivation of 3.2.17, it was assumed that ui
and uM are parallel, in line with the 1-D nature of the underlying two-phase
multiplier approach.

As an example, for a liquid-vapour mixture with phases labelled l and v,
if the total pressure drop is calculated via a liquid-based two-phase pressure
drop multiplier (commonly done in e.g. boiling scenarios), one would have:{

Kls = fA′′′s ,l α
N
l φ2

l Kls,sup

Kvs = fA′′′s ,v α
N
l φ2

l Kls,sup
|ul|
|uv |

(3.2.18)

which is how the drag factors are calculated. Note that since the total pres-
sure drop was calculated on the basis of the liquid phase superficial frictional
pressure gradient (i.e. M = l), the assumption that ul is parallel to uM is
tautologically true. However, this is not necessarily true for uv. In short, the
distribution of the total mixture-structure frictional pressure gradient between
the liquid and gas phases is calculated assuming that both the liquid-structure
and gas-structure frictional pressure gradients are parallel. This limitation is
however deemed acceptable as, as highlighted earlier, this is a 3-D adaptation
of an otherwise 1-D model.

To summarize, in a generic two-phase context, the fluid-structure momen-
tum exchange term for the i-th phase is modelled as:

Mi→s =

(
fA′′′s ,i α

N
M φ2

M KMs,sup
|uM |
|ui|

)
· ui (3.2.19)

withKMs,sup defined as of 3.2.14, in whichM is a label representing the phase
that was chosen as basis for the calculation of the mixture frictional pressure
gradient. For boiling flows, this generally consist of the liquid phase, while for
condensing flows, this generally consists of the vapour phase. For one-phase
flows instead, fA′′′s ,i = fA′′′s ,1p = 1, αNM = αN1p = 1 and φ2

M = 1 by definition, so
that:

M1p→s = K1p,s · u1p (3.2.20)
where it is recalled that, in virtue of equations equations 3.2.6, 3.2.14, one has
that K1p,s = K1p,s,sup in one-phase flows. Thus, regardless of the number of
fluid phases, the drag factor is always computed according to 3.2.14.
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Fluid-fluid momentum transfer The fluid-fluid momentum transfer term
Mi→j is only modelled in two-phase flows, for obvious reasons. It is recalled
that it consists of the momentum transfer across the fluid-fluid interface due
to diffusive processes. While there is a number of phenomena that contribute
to this at a microscopic level, such as friction, virtual mass, surface tension,
lift, turbulent dispersion etc., in this context only the friction and virtual mass
effects are modelled. This is fundamentally due to the intended spatial reso-
lution scale of the present approach, compatible with sub-channel approaches,
which also neglect the description of said forces in an explicit manner. Con-
versely, the effects of these unresolved forces should be somehow captured via
an enhanced momentum and thermal diffusivity. This will be briefly covered
in sub-section 3.2.5 concerning turbulence modelling. Thus:

Mi→j = Md,i→j + Mvm,i→j (3.2.21)

with Md,i→j and Mvm,i→j representing the drag and virtual mass forces re-
spectively. The drag force is modelled in a manner that is fundamentally
analogously to fluid-structure drag, namely:

Md,i→j = −Kij (uj − ui) (3.2.22)

with the key difference that that the fluid-fluid drag force acting on phase i
is inherently parallel to the slip velocity (uj − ui), so that the drag factor for
this process consists of a scalar rather than second-order tensor. Similarly to
the fluid-structure drag factor seen in 3.2.14, the generic form of Kij is:

Kij = (1− αs)
ρd

2Dh,D

|ui − uj|fd,ij(Reij) (3.2.23)

with the C, D subscripts denoting either the continuous or dispersed phase
properties. The term fd,ij is the Darcy friction factor. Generally, but not
necessarily, this factor is modelled as a function of the fluid-fluid interfacial
Reynolds number Reij, which is calculated as:

Reij =
Dh,D |ui − uj|

νC
(3.2.24)

The virtual mass force is modelled as:

Mvm,i→j = −fvmρc
(
∂

∂t
ui + ui ·∇ui −

∂

∂t
uj

)
(3.2.25)

with fvm the virtual mass coefficient. Unlike numerous other geometric and
non-geometric flow-regime dependent parameters (e.g. characteristic phase di-
mensions Dh,i, fluid-structure contact fractions fA′′′s ,i, volumetric interfacial
area densities A′′′i , etc.), the virtual mass is currently modelled as a constant
for all flow regimes for simplicity. While it is not uncommon for sub-channel
codes to neglect virtual mass effects, these are considered in the present model
as they have been show to improve the numerical stability of the iteratively
solved pressure-velocity coupled system [36] while not significantly affecting
overall results [37]. This was also observed in this work, resulting in signifi-
cant simulation run time reduction, as it is discussed in chapter 4.
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3.2.3 Heat and mass transfer closure

Fluid-structure heat transfer The fluid-structure heat transfer term qi→s
is modelled as:

qi→s = fA′′′s ,iA
′′′
s His (Ti − Ts) (3.2.26)

with fA′′′s ,i the fluid-structure contact area fraction, A′′′s the structure volu-
metric surface area density, His the fluid-structure heat transfer coefficient, Ts
and Ti the structure surface temperature and the fluid temperature respec-
tively. For clarity, [H] = W/m2/K and [q] = W/m3. Please note that due to
the coarse-mesh modelling, all of the reported variables represent their corre-
sponding quantities within each computational cell, i.e. Ts is the representative
surface temperature structure in a certain cell while Ti is the representative
fluid temperature of the fluid in that same cell.

For one-phase flows, the heat transfer coefficients is purely convective in
nature and is generally calculated starting from the Nusselt number Nuis for
the flow-structure configuration as:

His,conv =
κi Nuis
Dh,i

(3.2.27)

with κi the fluid thermal conductivity and Dh,i the characteristic fluid dimen-
sion, which in one phase flows equals the structure hydraulic diameter. The
Nuis can be calculated via user-provided correlations that are typically in the
form [35]:

Nuis = c0 + c1 Re
c2
is,sup Pr

c3
i (3.2.28)

with c0 through c3 being fluid, geometry dependent coefficients [38], Reis,sup
the fluid-structure Reynolds defined as of 3.2.131 and Pri the fluid Prandtl
number.

For the formulation of the two-phase fluid-structure heat transfer coeffi-
cient, the only models currently implemented consist in models for the treat-
ment of nucleate boiling. As it will be explained in chapter 4, since Sodium-
cooled Fast Reactors (SFRs) constituted the main application of interest for
the present work, due to the peculiar aspects of sodium boiling (suppressed or
absent sub-cooled boiling regimes due to the low sodium Prandtl number [39],
convective heat-transfer typically dominating up to critical heat flux [40]) this
treatment was deemed sufficient. Nonetheless, the specifics of the modelling
framework were programmed is such a way to enable the future inclusion of
a more complex treatment of the heat transfer coefficient, to allow treatment
of fluids e.g. for which significantly more complete (and complex) models for
the wall-fluid heat transfer coefficient in various heat transfer regimes (e.g.
sub-cooled boiling, pre and post-critical heat flux boiling, etc.) exist, such as
models used in e.g. the TRACE code [6].

1We recall that in one-phase flows αNi = 1, so that Reis,sup coincides with the traditional
Reynolds number definition as of equation 3.2.4.
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The current formulation of the two-phase fluid-structure heat transfer co-
efficient is based on the nucleate boiling formulation by Chen [41], which con-
structs the total heat transfer coefficient as a combination of a convective heat
transfer coefficient His,conv and a pool-boiling heat transfer coefficient His,pb

as:
His = fF,i His,conv + fS,i His,pb (3.2.29)

where fF,i and fS,i are a flow enhancement factor and a suppression factor
respectively. Physically, the flow factor represents the enhancement of the
convective component due to the added near-wall turbulence caused by de-
parting bubbles, which cannot be resolved without a fine-mesh Computational
Fluid Dynamics (CFD) treatment. Conversely, the suppression factor exists
to blend pool boiling between the nucleate boiling regime to the transition
boiling regime, in which the pool boiling contribution decreases significantly.

While the original model by Chen already prescribes models for each of
those four quantities, user-selectable models can be provided independently of
each other. Some of these are introduced in chapter 4.

Fluid-fluid heat transfer The interfacial heat transfer between the two
fluids is modelled via a two-resistance approach, meaning that qi→j consists of
the heat flux (per unit volume, for each mesh cell) between the bulk of fluid
i and the unresolved interface between fluids i and j within each mesh cell.
The term qi→j is thus denoted as qi→∂. Then:

qi→∂ = A′′′∂ Hi∂(Ti − T∂) (3.2.30)

with A′′′∂ being the fluid-fluid volumetric interfacial area density, Hi∂ the heat
transfer coefficient for the i-th side of the interface and T∂ the interfacial
temperature. The interfacial volumetric area density is generally denoted as
A′′′ij , but since this instance of the methodology is being applied for two-phase
flows at most, it is denoted as A′′′∂ .

For the case of two-phase flows in which both phases belong to the same
chemical species (e.g. flows where mass transfer between the phases is possible
via phase change), the interfacial temperature is set to the saturation tem-
perature according to user-selected saturation models. Possible imbalances in
the heat flux on each side of the interface (which cannot store energy) are
what drives phase change and the basis of how the mass transfer term Γ is
calculated. Otherwise, if the two phases belong to chemically different species
and no thermally-driven phase change is to be modelled, the interfacial tem-
perature is calculated so that the heat flux on both sides of the interface is
conserved.

Mass transfer The modelling of mass transfer is based on energy conserva-
tion considerations. Let us consider the sum of all inter-phase transfer terms
as of their first introduction in sub-section 2.3.4 in a two-phase scenario for a
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given phase i:
qα,i→j + qκ,i→j = Γi→jhi + qκ,i→∂ (3.2.31)

where it is recalled that qκ,i→j ≡ qκ,i→∂ ≡ qi→∂ (and similarly qκ,j→i ≡ qj→∂),
where ≡ means that these relations exclusively represent a change in notation.
By imposing energy conservation across the interface:

qα,i→j + qκ,i→j = − (qα,j→i + qκ,j→i)⇒
Γi→jhi + qi→∂ = −Γj→ihj + qj→∂ (3.2.32)

The latent heat Li→j associated with phase change is introduced starting from
its physical definition as:

Li→j(p, T ) = hj(p, T )− hi(p, T ) (3.2.33)

which might be negative or positive depending on which phase is the liquid
and which is the vapour, and whose general dependence on temperature and
pressure was highlighted. Please note that while physically a latent heat is
always positive, the numerical definition provided by 3.2.33 will result in a
mass transfer term that is sensitive to label inversion, as it should be, i.e. that
results in Γi→j = −Γj→i. By combining 3.2.33 with 3.2.32 it is easy to show
that:

Γi→j =
qi→∂ + qj→∂

Li→j
(3.2.34)

This formulation for the mass transfer is know as a heat conduction limited
model, which is commonly employed in sub-channel and system codes in which
inter-phase heat transfer phenomena are modelled via a two-resistance ap-
proach. In particular, a heat-conduction limited approach ensures that energy
is conserved at the inter-phase interface (i.e. the interface cannot store any
energy), so that any imbalance between the heat fluxes at each side of the
interface is “absorbed” in the volumetric mass transfer rate Γi→j.

This formulation always requires a certain degree of super-heating or sub-
cooling of the phase bulk to drive phase change. Because of this, some ad-
justments to the model can prove beneficial, as discussed with the following
example involving a liquid phase i and a vapour phase j. If the vapour is at sat-
uration and the liquid is super-heated, then qi→∂ > 0 and Γi→j = qi→∂/Li→j.
The heat contribution that figures on the right-hand side (RHS) of the liquid
enthalpy equation is −qlδ, which by definition of how the mass transfer term
is computed, results in qi→∂ = Γi→jLi→j. Conversely, as the solver operates
in terms of sensible enthalpy (rather than absolute), the heat contribution
on the vapour side is qj→∂ = 0 as there is (physically) no change in vapour
temperature during boiling. The same logic applies in the opposite scenario
with a sub-cooled vapour i and a liquid j at saturation. Thus, the interfa-
cial heat transfer terms qi→∂ that figures in the enthalpy equations constitute,
during phase change, the latent heat contribution of the phase change process.
Let us now provide some physical intuition for the intrinsic enthalpy change
contribution qα,i→j = Γ→jhi instead.
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Let us focus on a fluid mass dm. The enthalpy contribution associated
with said mass is dmhi. Thus, when such a mass of liquid is being removed
e.g. due to phase change, in addition to the latent heat Li→j, the intrinsic
contribution hl is accounted by qα,i→j. Physically, this contribution should
be evaluated at saturation enthalpy, i.e. hsat,i, as it is at saturation at which
the fluid is “disappearing” or “reappearing”. However, as introduced earlier, a
super-heat or sub-cooling of the fluid is required for phase change to occur, so
that hi > hsat,i if phase i is a boiling liquid or hi < hsat,i if it is a condensing
vapour. If one were to remove a boiling (condensing) fluid from a cell at
an enthalpy lower (higher) than the saturation one, the remaining fluid will
inevitably remain at a higher (lower) specific enthalpy and thus, at a higher
(lower) temperature (as it is also discussed in the TRACE system code guide
[6], pp. 12−13). Thus, to prevent a so-called “thermal run-away”, the intrinsic
enthalpy change contribution is always evaluated as follows:

qα,i→j =

{
Γi→j hi Γi→j ≥ 0

Γi→j hsat,i Γi→j < 0
(3.2.35)

In order to be consistent with this approach of managing the intrinsic enthalpy
change contribution, the mass transfer is calculated with an adjusted latent
heat:

Γi→j =
qi→∂ + qj→∂

Ladji→j
(3.2.36)

with the adjusted latent heat being calculated as [6]:

Ladji→j =

{
Li→j − |hi − hi, sat| Γi→j ≥ 0

Li→j − |hj − hj, sat| Γi→j < 0
(3.2.37)

with Li→j being the latent heat computed by the user-selected latent heat
model.

3.2.4 Structure thermal modelling

Modelling the structure in a coarse-mesh context consists in a hydraulic mod-
elling aspect and a thermal modelling aspect. On the hydraulic side, relevant
quantities consist of the structure volume fraction, hydraulic diameter, surface
area density and tortuosity, whose nature and derivation has been discussed
in chapter 2. The focus hereby shifts on the description of the modelling of
the thermal component.

By thermal structure modelling we mean the representation of some pos-
sibly power-producing underlying structures with specific geometries (e.g. nu-
clear fuel pins), whose internal temperature profiles resolution can be of in-
terest. Some of these models thus rely on a secondary sub-mesh, which exists
within each global mesh cell, to resolve these profiles. For this reason, the
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energy conservation equations associated with these structures are generally
solved on the global mesh on a cell-by-cell basis.
From the perspective of thermally coupling the structures to the fluid, re-
gardless of the specifics of the structure thermal model, while each phase can
transfer heat to and from the structure individually via the qi→s term, as
seen earlier, the structure temperature/enthalpy is updated by assuming it
exchanges heat with the two-phase mixture m as a whole, namely:

qm→s = A′′′s Hms (Tm − Ts) (3.2.38)

where Hms is a certain mixture-structure heat transfer coefficient and Tm is
a certain mixture temperature. These quantities are calculated so to assure
energy conservation, meaning qm→s = qi→s + qj→s. However, this provides a
single constraint for the determination of two variables, Hms and Tm, so that
one of the two should be modelled a priori in some way. A reasonable choice
is to model Hms as:

Hms = fA′′′s ,iHis + fA′′′s ,jHjs (3.2.39)

which physically consists in assuming that the heat transfer between each
fluid phase and the structure happens in parallel over the contact fraction
fA′′′s ,i, fA′′′s ,j of each phase with the available total structure volumetric area.
From this choice of the mixture heat transfer coefficient, if follows from energy
conservation consideration that the mixture temperature must be modelled as:

Tm =
fiHisTi + fjHjsTj
fiHis + fjHjs

(3.2.40)

Equations 3.2.38 through 3.2.40 provide a way to define the structure-mixture
heat flux that is ultimately used as a boundary condition for the structure-
specific power models that are responsible for updating the structure surface
temperature. The possible models are now introduced.

0-D structure Within each mesh cell where it exists, this model represents a
structure that can be characterized uniquely by an average temperature value
Ts, density ρs and specific heat capacity cp,s, and possibly an internal power
density source term qint,s. Thus, this model does not rely on a sub-mesh to
update the structure temperature. In particular, this model assumes that the
surface temperature is representative of the average structure temperature Ts,
so that the structure energy governing equation is modelled as:

ρscp,s
∂

∂t
Ts = qint,s + qm→s (3.2.41)

Heat conduction between adjacent cells in the global mesh is neglected. Please
note that qm→s is treated semi-implictly as it entails a dependence on Ts, which
is the solution variable.

51



1-D uniform pin structure Within each mesh cell where it exists, this
model represents a cylindrical pin of outer radius rO, inner radius rI (which
can be 0), density ρs and heat capacity cp,s, and possibly an internal power
density source term qint,s. This model relies on a sub-mesh within each global
mesh cell, with the sub-mesh representing the radial domain of the pin, and
the fuel pin temperature profile T = T (r) being defined on such sub-mesh. An
energy equation is solved in the following form:

ρscp,s
∂

∂t
T − κs∇ · (∇T ) = qint,s (3.2.42)

A convective (i.e. Robin) boundary condition on the outer pin surface (i.e. at
r = rO with an outward surface normal n) describes the thermal coupling with
the fluid:

−κs∇T |rO · n = qm→s (3.2.43)

Conversely, a zero-gradient boundary conditions is applied at r = rI . The
solution of 3.2.42 with respect to the sub-mesh radial temperature field T
within each global mesh cell allows to update the structure surface tempera-
ture Ts = T (rO). The energy equation 3.2.42 is solved via a Finite Volume
discretization within each global mesh cell. A more detailed explanation of how
this is achieved is presented in appendix A. As for the 0-D model discussed
earlier, heat conduction between different sub-meshes in adjacent global mesh
cells is neglected.

1-D nuclear fuel pin Within each mesh cell where it exists, this model
represents a nuclear fuel pin consisting of two layers: fuel and cladding. Each
layer is characterised by an inner and outer radius, density and heat capacity,
and an optional power density source term in the fuel. A gap layer separates
the fuel from the cladding as is characterised uniquely by a certain gap con-
ductance value. The modelling via a radial sub-mesh and the coupling to the
fluid is the same as discussed for the 1-D uniform pin. A detailed derivation
of the Finite Volume Method (FVM)-discretized governing equations and a
more detailed description of the integration of this approach in a coarse-mesh
context is provided and discussed in appendix A.

3.2.5 Turbulence modelling and tortuosity remarks

The macroscopic governing equations for mass, momentum and enthalpy con-
servation, 3.1.1 3.1.2, 3.1.3 were derived starting from their fundamental coun-
terparts that hold at microscopic level in a neighbourhood of a fluid phase.
If the volume averaging process was instead performed on the microscopic
Reynolds-Averaged Navier Stokes (RANS) equations, it can be shown that
the same formulations for the momentum and enthalpy equations presented
in 3.1.2, 3.1.3 would have been obtained, with the addition of the volume av-
erage of the Reynolds stress tensor, which is treated differently depending on
the turbulence modelling approach.
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The present approach relies on an eddy-viscosity-based model for the treat-
ment of the Reynolds stress tensor, namely the standard k−ε model [42]. The
task of deriving the volume-averaged k − ε equations would fundamentally
follow the same procedure outlined in chapter 2, and would lead to additional
source terms in both equations, as seen for the volume average of a generic
transport equation, which requires closure. While efforts in this direction do
exist, such as those by Nakayama et al. [43], Chandersis et al. [44], who
investigated the same problem, namely modelling turbulence in engineering
structures treated as porous media, the formulation adopted in this code was
inherited from the work of Fiorina [20] in the development of the GeN-Foam
code. This approach avoids solving the complete volume-averaged k− ε equa-
tions within the porous structure, rather, it forces the turbulence kinetic energy
ki and dissipation rate εi to converge to equilibrium values k∞,i, ε∞,i, namely
values for a fully developed flow, so that the equations that are solved in the
mesh cells that contain an averaged structure (i.e. where αs 6= 0) are:

∂

∂t
(αiρiki) + ∇ · (αiρiuiki) = αiρiω (k∞,i − ki) (3.2.44)

∂

∂t
(αiρiεi) + ∇ · (αiρiuiεi) = αiρiω (ε∞,i − εi) (3.2.45)

These equilibrium values can be computed via correlations for the turbulence
intensity It,i and turbulence length scale Lt,i:

k∞,i =
3

2
(|ui|It,i)2 (3.2.46)

ε∞,i = C
3
4
µ
k

3
2
i

Lt,i
(3.2.47)

with those correlations generally in the following form [45] (for pipe or channel
flows):

It,i = cI,0 Re
cI,1
is (3.2.48)

Lt,i = cL Dh (3.2.49)

with cI,0, cI,1, cL experimentally-determined coefficients.
It is clear that this methodology presently only applies to single-phase

flows, as the investigation of two-phase flows with a k−ε turbulence modelling
will result in additional source terms for the turbulent kinetic energy and
dissipation equations due to the interaction between fluid phases. While some
approaches to model these terms are presently included in the code (such as the
approach by Lahey [46]), these are valid exclusively outside of porous regions
as the modelling of two-phase turbulence in porous media was not deemed
of central importance for this work. This was mainly due to the strongly
advective two-phase flow scenarios of interest to this work. Given that eddy-
viscosity turbulence models, such as any k − ε model, have the final effect of
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modifying the effective kinematic and thermal diffusivities νeff,i, aeff,i used in
the conservation equations, this was deemed acceptable.

However, an important clarification should be made relative to the role of
the k − ε model when used for predicting turbulence parameters in the fuel
region. It is recalled that, in such region, a coarse-mesh model is intended
to operate at the same level of spatial resolution as a sub-channel code, by
employing the same correlations for modelling momentum and heat trans-
fer phenomena. These correlations are typically already inclusive of diffusive
effects arising from turbulence phenomena, so that employing the effective
momentum νeff and thermal aeff diffusivities in the governing equations (in
such regions) instead of the molecular values can lead to an over-estimation
of diffusive effects. For this reason, the code offers the choice to specify which
regions should employ the effective diffusivities in place of the molecular ones.
It is in fact recalled that while the code is intended to operate at sub-channel
resolution in fuel/core regions, the mathematical formulation of the governing
equations would remain the same if said regions were modelled via a fully-
geometrically resolved mesh, thus having the code operate like a standard
CFD one (the coarse-mesh reverts to a fine-mesh approach). In this scenario,
correlations are no longer required and the effective thermal diffusivities (cou-
pled with a standard k − ε model) are required. A last clarification is made
then on the usefulness of the equilibrium k − ε model when analyzing a core
region with a coarse-mesh approach, as the effective diffusivities are not to be
used. The principal reason lies in enabling the prediction of meaningful k, ε
values at the outlet of such regions, where they connect to core plena (if an
entire reactor vessel is being modelled), as in plena regions (i.e. “clear-fluid”
regions) the standard k−ε model equations are being solved and these require
meaningful vales at plenum inlet.

On a similar note lies the treatment of tortuosity Ti, which is a term that
is only present in the diffusive terms in equations 3.1.2, 3.1.3 as a diffusivity
multiplier. In practice it can be thought of as transforming the diffusivities
into tensor quantities. From the definition of tortuosity in equation 2.3.37,
is it clear that its treatment in two-phase flows is significantly more complex
than in one-phase. In one-phase scenarios, the domain over which the integral
that defines the tortuosity is computed is constant in time (assuming an im-
movable structure), as it consists of the fluid-structure interface. Thus, this
tortuosity can be computed once and set as a constant for the rest of the
simulation. In two-phase scenarios instead, the integration domain will span
both the fluid-structure interface and the fluid-fluid interface, whose geometry
evolves in time and is fundamentally unknown in a coarse-mesh context. This
unknown fluctuating tortuosity component can be interpreted as an additional
turbulence-related diffusivity multiplier. This would require some closure that,
for the reasons illustrated for two-phase turbulence modelling, was not pur-
sued in the present work. Thus, all the tortuosity tensors used in this work in
two-phase scenarios consist of the same tensor that would be obtained in a one-
phase scenario, which depends exclusively on the one-fluid-structure interface
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geometry, i.e. the structure geometry alone.

3.3 Solution algorithm
The previous section has outlined how to provide adequate closure and mod-
elling for all the terms that required so in equations 3.1.1, 3.1.2, 3.1.3. The
present section describes how this coupled system of equations is solved. In
virtue of the underlying OpenFOAM framework and the significantly larger
ease of implementation, the solution algorithm for the various equations is
segregated, meaning that the equations are discretized and solved individually
and the process iterated (in some manner, to be discussed) until convergence.
This is contrasted to matrix-coupled approaches, in which all equations are
discretized so to result into a single matrix that is solved at once. While the
coupled approach still requires iterations to resolve non-linearities of the indi-
vidual equations, it has potential to significantly improve convergence, albeit
matrix preconditioning can become an issue and the method becomes increas-
ingly more computationally expensive for larger computational domains [47].
To this day, the vast majority of computer codes for the simulation of the
Navier-Stokes equations specifically rely on segregated methods.

The discussion will be structured in the following way. Section 3.3.1
presents the numerical implementation and solution steps for the fluid mechan-
ical behaviour, namely the Navier-Stokes equations. Section 3.3.2 presents the
enthalpy solution algorithm. This is inclusive of the presentation and discus-
sion of the novel pressure-velocity coupling solution algorithm. Section 3.3.3
presents the global solution algorithm that couples the Navier-Stokes and the
enthalpy equations, together with the overall code solution procedure.

3.3.1 Solution of the Navier-Stokes equations

The system of equations governing fluid flow without thermal considerations
is constituted by the Navier-Stokes equations, namely 3.1.1, 3.1.2 in a coarse-
mesh context. The fundamental problematics of solving the Navier-Stokes
equations (in any CFD context) comes from the fact that, at its core, while
there is an equation for density (ρ in a one-phase context, αiρi in a generic
multi-phase context) and an equation for velocity u, there is no equation for
pressure p. This is known as the pressure-velocity coupling problem and can
be tackled with two fundamentally different approaches, namely a density-
based approach or a pressure-based approach, each of which have resulted in
a plethora of specific solution algorithms.

Density-based algorithms are predominantly employed for one-phase, highly
compressible flows commonly found e.g. in aeronautic applications. These al-
gorithms take advantage of an additional equation of state to relate the fluid
pressure to its density. The solution process would generally consist of the fol-
lowing steps: 1) solve the continuity equation to obtain the fluid density with
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the latest available values for fluid velocity; 2) employ the equation of state to
analytically compute the pressure field; 3) solve the momentum equation to
obtain the fluid velocity; 4) iterate these steps in some way until convergence
is achieved for the time step under consideration. This approach is inappli-
cable for the simulation of incompressible flows (due to the independence of
pressure and fluid density) or for the simulation of liquids, which are typically
characterized by very small values of compressibility ψ ≡ 1

ρ
∂ρ
∂p
, which means

that small variations in density will lead to very large variations in pressure,
hindering the stability of the method.

For these circumstances, pressure-based algorithms are preferred. As the
equation of state that relates pressure and density is either too density-sensitive
or is not formulated in terms of a density-pressure dependence at all (e.g. equa-
tions of state that relate fluid density to its temperature, which are extensively
used in a plethora of engineering applications for modelling liquid flows), a
different approach to computing a pressure field is employed. In particular,
pressure-based methods combine the momentum equation and the continuity
equation to construct an equation for pressure. Thus, the pressure field is
computed so that it ensures mass continuity.

Pressure-based approaches were first developed by Spalding, Patankar [48]
with the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) for
the treatment of steady-state flows and by Issa [49] who developed the Pressure
Implicit with Splitting of Operators (PISO) algorithm for the treatment of
transient flows. While the two algorithms fundamentally differ in how certain
steps of the solution procedure are iterated, the underlying basis is the same,
namely the construction and solution of a pressure equation that ensures con-
tinuity. The key steps of pressure-based algorithms can be summarized as
follows:

1. construct and solve the momentum equation based on an explicit eval-
uation of the pressure gradient. This yields a new velocity field that
does not necessarily ensure mass conservation. This step is referred to
as velocity predictor step;

2. construct and solve a pressure equation from the momentum and con-
tinuity equations. This and the next step are referred to as pressure
correction step;

3. correct the velocities with the newly estimated pressure gradient to en-
sure mass conservation.

To “construct” means to discretize according to the overarching numerical
framework, represented by the FVM in our case, so to obtain a matrix represen-
tation of the linearized equation of interest. The specifics of how these steps are
iterated is what fundamentally differentiates the various pressure-based solu-
tion algorithms (e.g. SIMPLE, SIMPLER[50], PISO, etc.). This work employs
the merged PISO-SIMPLE (PIMPLE) algorithm, which fundamentally retains
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the transient nature of the PISO algorithm while gaining some of the advan-
tages of the SIMPLE algorithm, chiefly among which is the possibility to over-
come numerical limitations imposed by the Courant–Friedrichs–Lewy (CFL)
condition, which otherwise poses constraints on the maximum time step size
depending on the mesh size and flow velocity for numerical stability reasons
[51].

So far, this discussion has been oblivious to the fact that the system of in-
terest is potentially a two-fluid system, and this was done for the sake of intro-
ducing some fundamental concepts in tackling the problem of pressure-velocity
coupling. Under the assumption that all phases share a single pressure field,
which is the default approach for the simulation of multi-phase flows across
a wide range of computer codes, from general-purpose CFD software such as
ANSYS [45] to nuclear system-codes [6], the key steps outlined earlier remain
the same, as it will be shown in greater detail. However, a further difficulty is
introduced by two aspects: the presence of further variables, namely the phase
fractions αi; and the coupling between the two fluid momentum equations via
the transfer terms Mj→i, which are a function of both phase velocities as seen
in equation 3.2.22.

The phase fractions are obtained by solving the continuity equations, as
it will be shown in the next paragraphs. The treatment of the momentum
coupling is discussed afterwards, as it resulted in an improved implementation
of the original Partial Elimination Algorithm (PEA) by Spalding [52].

3.3.1.1 Solution of the continuity equation

The continuity equation is solved to yield the new time step phase fractions αi
provided knowledge of all the other fields, ρi, ui, Γi→j. This step is performed
at the beginning of each new PIMPLE iteration and/or time step, before any
of the other steps that concern the treatment of pressure-velocity coupling. It
is recalled the that the continuity equation for the i-th phase in a two-phase
system is:

∂

∂t
(αiρi) + ∇ · (αiuiρi) = −Γi→j (3.3.1)

Compressibility effects due to density changes, as well as phase change proper,
can be isolated on the left-hand side (LHS) by expanding the derivative terms:

∂

∂t
αi + ∇ · (αiui) = Sα,i (3.3.2)

Sα,i =
1

ρi

(
αi
∂

∂t
ρi + αiui ·∇ρi − Γi→j

)
(3.3.3)

Please note that in a two-phase system, it is sufficient to solve only one phase
fraction equation. The phase fraction source term Sα,i is evaluated explicitly
and the phase fraction equation is solved via the Multidimensional Universal
Limiter with Explicit Solution (MULES) algorithm [53], which is a particular
instance of a Flux Corrected Transport (FCT) technique [54].

57



FCT was originally devised as a method to solve the continuity equa-
tions using a hybrid discretization of the advective term: less diffusive than a
low-order scheme (e.g. upwind) yet not resulting in a potentially unbounded
phase fraction that a higher-order scheme might cause. This is particularly
relevant close to steep phase fraction gradients, thus to interfaces between
representative volumes (RVs) that contain structures and RVs that do not in
a coarse-mesh context.

Let us consider a Finite Volume discretization of the phase fraction equa-
tion 3.3.2. Subsequent to volume integration and the application of the Gauss-
Green theorem, as discussed in section 2.2, it can be written in each mesh cell
c as:

∂

∂t
αi,c +

1

V

∑
f∈c

φα,i,f = Sα,i,c (3.3.4)

where the second term on the LHS is the advection contribution, which can be
explicitly evaluated as a sum over cell faces f of the volumetric flux φα,i, which
is a field defined over mesh cell faces. The core idea of FCT is to construct
φα,i as a combination of a flux obtained via a low-order interpolation scheme
φα,i,LO = (αiui)|f,LO · Sf and a flux obtained via a high-order interpolation
scheme φα,i,HO = (αiui)|f,HO · Sf :

φα,i = φα,i,LO + λ (φα,i,HO − φα,i,LO) (3.3.5)

in which λ are limiting factors that quantify the maximum possible contribu-
tion from a high-order flux that guarantees boundedness.
All the different implementations of a FCT technique consist in variations on
how λ is computed. The MULES algorithm is already implemented in several
OpenFOAM solvers and was adopted in this work. The general idea behind
MULES is to compute λ from mass balance and allowable phase fraction con-
siderations on a cell-by-cell basis by considering that, physically, the diffusion
process alone cannot create new maxima or minima in a transported scalar
quantity. The detailed procedure at the heart of the MULES algorithm is
described in [53], [55] and is conceptually similar to the limiters devised by
Zalesak [56].

3.3.1.2 Implementation of the momentum equation

Before discussing the solution procedure itself, some remarks on the numerical
implementations of the momentum equations, namely 3.1.2 are made. For
the i-th phase, this implementation is as follows: The general form of the
momentum conservation equation for the i-th phase is:

∂

∂t
(αiρiui) +∇ · (αiρiui ⊗ ui) =

− αi∇p+∇ · (αiρiνeff,iTi · (∇ui + (∇ui)
T − 2

3
(∇ · ui)I)) + Su,i

(3.3.6)
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where the source terms have been grouped in Su,i:

Su,i = Kij(uj − ui)−Kis · ui + fvmρc(
∂

∂t
ui + ui · ∇ui −

∂

∂t
uj) +

+ Γj→iuj − Γi→jui + αiρig − ξiui (3.3.7)

This formulation is identical to the one presented in 3.1.2, yet expanded to
showcase the formulation of the diffusive and transfer terms, and except for the
last term added in Su,i, namely ξiui. This is a purely numerical correction that
accounts for continuity errors. The continuity error ξ is an explicit numerical
evaluation of the continuity equation so that:

ξi =
∂

∂t
(αiρi) +∇ · (αiρiui) + Γi→j (3.3.8)

The continuity errors should be physically null at all times. In practice, these
quantify how well the pressure-velocity coupling was resolved (as the pressure
comes from the solution of an equation that is derived from the continuity
equation). These can be also thought of as spurious mass sources for phase
i (when ξi > 0) or sinks (when ξi < 0) that arise from a non-conservative
momentum field, consequence of the segregated nature of the algorithm.

In the case of the momentum equation, the spurious momentum sources
associated with the continuity error is ξiui, which is thus accounted for in the
momentum equation. As it will be seen, this is accounted in the enthalpy
equation as well. The continuity equation already takes this correction term
into account as the phase fraction source term Sα,i defined in 3.3.3 is evalu-
ated explicitly for the solution of the continuity equation. By expanding the
derivatives in the definition of the continuity error 3.3.8:

αi
∂

∂t
ρi + αiui ·∇ρi = ξi − ρi

(
∂

∂t
αi + ∇ · (αiui)

)
− Γi→j (3.3.9)

Taking advantage of this result, it is easy to see that explicitly evaluating
the phase fraction source term Sα,i via 3.3.3 is equivalent to evaluating it as
follows, which highlights the fact that continuity errors are accounted indeed:

Sα,i =
1

ρi
(ξi − 2Γi→j)−

∂

∂t
αi + ∇ · (αiui) (3.3.10)

The general discretization procedure of the various terms of a momentum
equation in the form of 3.3.6 are achieved by the high-level functions provided
by the OpenFOAM environment [23].

In order to enhance the convergence properties of the discretized matrix
(e.g. by increasing diagonal dominance), a further manipulation is performed
on the fluid-structure drag factor. As discussed earlier, this is a second-order
tensor to account for the potential anisotropy of the structure. This term is
treated semi-implicitly:

Kis · ui =
1

3
tr(Kis)ui + (Kis −

1

3
tr(Kis)I) · ui
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where tr(·) denotes the matrix trace operator. The diagonal contribution
of Kis is thus treated implicitly2, while the off-diagonal is treated explicitly,
as there is no other possible approach in segregated methods (recall that the
momentum equation for each phase fundamentally consists of three momentum
equations for each scalar component of the phase velocity).

3.3.1.3 Two-phase pressure-velocity coupling

A key element of equations 3.3.6 is the inter-phase momentum coupling term
arising from drag, i.e. Kij (uj − ui), which can benefit from specific treatments
to enhance the stability of the algorithm. This paragraph presents how the
pressure-velocity coupling is resolved in the developed algorithm, inclusive of
novel developments for the treatment of the inter-phase momentum coupling.

For notation clarity and simplicity, the two phases will be labelled as 1 and
2, while the fluid-fluid drag factor will be indicated without any subscripts as
K, and referred to as coupling coefficient.

Assume the momentum equations can be linearized and discretized accord-
ing to a chosen set of discretization schemes, so that the momentum equations
3.3.6 (one for each of the two phases) can be expressed as:

M̂1u1 = b1(p) +K(u2 − u1)

M̂2u2 = b2(p) +K(u1 − u2) (3.3.11)

in which M̂i is the discretized momentum transport operator, b(p)i is the
source term inclusive of the pressure gradient, and where the fluid-fluid drag
term is treated separately.

The first option to treat the coupling term is an explicit representation
where the latest available values for the phase velocities are employed. This
treatment is simple but potentially unstable for large values of the coupling
coefficient.

The second option is to treat it semi-implicitly by modifying the operator
diagonal as follows:

M̂∗
i = M̂i +KÎ (3.3.12)

as this increases the diagonal dominance the discretized transport operator.
Nonetheless, an explicit evaluation of the remaining Kuj on the left hand side
is still required. This approach is generally referred to as the Partially Implicit
treatment [57].

The third option results from noticing that 3.3.11 is a system of two equa-
tions in two variables3, so that there could be a way to formulate each equation
in terms of a single variable, thus eliminating the need for explicit coupling

2AsKis is itself a function of velocity, as seen in 3.2.17, 3.2.14, it is the explicit evaluation
of Kis that is treated implicitly, so that formally this treatment is semi-implicit.

3Technically, if the computational domain consists of N mesh cells, the actual problem
consists of of 6N algebraic relations and 6N variables, namely 3 velocity vector components
for each of the 2 phases for each cell.
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evaluations. This idea for the treatment of the momentum equations is know
as Partial Elimination [52], and there are a number of ways to implement.
The implementation that was derived and adopted is novel in the domain of
OpenFOAM solvers and will be introduced in this sub-section.

Let us return to equations 3.3.11. It is possible to algebraically manipulate
them to remove the coupling, in line with Partial Elimination ideas:

(M̂1 +K(M̂−1
2 M̂1 + Î))u1 = b1(p) +KM̂−1

2 (b1(p) + b2(p))

(M̂2 +K(M̂−1
1 M̂2 + Î))u2 = b2(p) +KM̂−1

1 (b1(p) + b2(p)) (3.3.13)

It is clear from the structure of system 3.3.13 that the coupling between the
phases is now treated in a fully implicit manner. However, the numerical as-
sembly of the system is computationally more intensive due to the additional
matrix inversion operations. The idea is then to not solve the momentum
equations, but to take advantage of the discretized momentum matrices to
assemble the pressure equation. The velocities can then be algebraically re-
constructed from the pressure gradient as it is generally done in a traditional
pressure correction step.
The pressure equation can be assembled via a number of approaches. In a
shared phase pressure framework, it is obtained from the sum of the continuity
equations 3.3.1 for the two phases:

∇ · (α1u1 + α2u2) = Sα(p) (3.3.14)

in which Sα(p) = Sα,1(p) + Sα,2(p) is the sum of phase fraction source terms
(i.e. due to phase transfer and/or compressibility effects), which are possibly
pressure-dependent in some way (as Sα,i depends on ρi, which can be pressure-
dependent depending on the fluid equation of state). The time derivative of
the sum of phase fractions is null assuming that the volume fraction of the
structure is constant in time. In order to obtain an equation for pressure from
3.3.14, an algebraic relationship between the phase velocities and pressure
is required. To this end, let us focus our attention back to the momentum
equations.

The momentum transport operator M̂i introduced earlier can be decom-
posed in a diagonal part M̂D,i and an off-diagonal part M̂OD,i. Since the
diagonal coefficients are the same for all velocity components of a phase, these
will be represented with a scalar field Ai = M̂D,i. By recalling that the source
term bi(p) = b∗i −αi∇p is inclusive of the pressure gradient and by defining:

Hi = −M̂OD,iui + b∗i (3.3.15)

as the explicit evaluation of the off-diagonal velocity contributions inclusive
of other source terms, an algebraic relationship between each velocity field
and the pressure gradient can be obtained from either 3.3.11 or 3.3.13 [21][58].
Standard OpenFOAM approaches4 derive it from equation 3.3.11, which still

4As of OpenFOAM v2006.
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entails an explicit evaluation of the coupling term, while the developed ap-
proach derives it from 3.3.13, as it is now discussed.

By decomposing the momentum transport operator M̂i in a diagonal part
Ai and an explicit off-diagonal contribution Hi as described before and defin-
ing:

A∗∗i = Ai +K(1 +
Ai
Aj

) (3.3.16)

the following relationship can be obtained from 3.3.13:

u1 =
1

A∗∗1

((
1 +

K

A2

)
H1 +

K

A2

H2 −
((

1 +
K

A2

)
α1 +

K

A2

α2

)
∇p

)
u2 =

1

A∗∗2

((
1 +

K

A1

)
H2 +

K

A1

H1 −
((

1 +
K

A1

)
α2 +

K

A1

α1

)
∇p

)
(3.3.17)

The relationship established by 3.3.17 thus accounts for Partial Elimination (as
there is no coupling between the velocities) and provides the desired algebraic
relationship between pressure and velocity. Thus, by taking advantage of
equations 3.3.14 and 3.3.17, an equation for pressure is obtained:

∇ ·
((

α1

A∗∗1

(
1 +

K

A2

)
+

α2K

A∗∗2 A1

)
H1 +

(
α2

A∗∗2

(
1 +

K

A1

)
+

α1K

A∗∗1 A2

)
H2

)
+

−∇ ·
((

α1

A∗∗1

(
α1 +

K

A2

(α1 + α2)

)
+

α2

A∗∗2

(
α2 +

K

A1

(α1 + α2)

))
∇p

)
=

= Sα(p) (3.3.18)

Let us thus summarize the developed approach. First, the discretized momen-
tum transport operators M̂i in form 3.3.11 are constructed. This enables the
evaluation of the modified diagonal coefficients field A∗∗i via 3.3.16 and the
explicit evaluation of off-diagonal and source terms (exclusive of pressure) Hi

as of 3.3.15. These are then used to assemble and solve a pressure equation in
form 3.3.18. After this solution and the evaluation of a new pressure gradient,
phase velocities are updated according to equations 3.3.17.

For the sake of comparison, it is worth noting that in existing OpenFOAM
implementations the pressure-velocity relationship is derived from equation
3.3.11 instead with an implicit treatment of −Kui, achieved by decomposing
the momentum transport operator M̂i in a diagonal part Ai which is modified
as:

A∗i = Ai +K (3.3.19)
and an explicit off-diagonal contribution Hi still evaluated of 3.3.15. The
following algebraic relationship between pressure and velocity is thus obtained:

u1 =
1

A∗1
(−α1∇p+ H1 +Ku2)

u2 =
1

A∗2
(−α2∇p+ H2 +Ku1) (3.3.20)
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The relationship established by 3.3.20 is not based on Partial Elimination, as
the coupling is clearly not implicit. Nonetheless, it is used to construct and
solve a pressure equation from 3.3.14, which consequently also evaluates the
coupling contributions explicitly:

∇ ·
(
α1

A∗1
(H1 +Ku2) +

α2

A∗2
(H2 +Ku1)

)
−∇ ·

((
α2

1

A∗1
+
α2

2

A∗2

)
∇p

)
= Sα(p)

(3.3.21)
Standard OpenFOAM approach take advantage of Partial Elimination only at
the velocity correction step. Unlike the approach that was adopted, velocities
are not computed from the same pressure-velocity relationship used to con-
struct the pressure equation. Instead, coupling variables are eliminated from
3.3.20 to obtain:

u1 =
1

A∗1 − K2

A∗2

(
−α1∇p+ H1 +

K

A∗2
(H2 − α2∇p)

)
u2 =

1

A∗2 − K2

A∗1

(
−α2∇p+ H2 +

K

A∗1
(H1 − α1∇p)

)
(3.3.22)

Let us thus summarize the exiting OpenFOAM approach. First, the discretized
momentum transport operators M̂i in form 3.3.11 are constructed. This en-
ables the evaluation of the modified diagonal coefficients field A∗i via 3.3.19 and
the explicit evaluation of off-diagonal and source terms (exclusive of pressure)
Hi as of 3.3.15. These are then used to assemble and solve pressure equation
in form 3.3.21. After this solution, phase velocities are updated according to
equations 3.3.20.

The fundamental difference between the developed and standard Open-
FOAM approach thus lies in the fact that the OpenFOAM approach only takes
advantage of Partial Elimination in the velocity reconstruction step, as the cou-
pling is treated explicitly in constructing the pressure equations. Conversely,
the developed approach applies Partial Elimination in the construction of the
pressure equation itself, which thus conditions the convergence properties of
its solution, as it is clear from the larger coefficient associated to the pressure
gradient in in equation 3.3.18 when compared to 3.3.21. The verification of
the developed algorithm via the Method of Manufactured Solutions (MMS) is
discussed in section 3.4, while its performance gains compared to the standard
OpenFOAM algorithm are discussed for a number of scenarios in section 3.5.
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3.3.1.4 One-phase pressure-velocity coupling

In a one-phase scenario with an immovable structure, the Navier-Stokes equa-
tions reduce to:

∇ · (αu) = Sα,1p (3.3.23)
∂

∂t
(αρu) + ∇ · (αρu⊗ u) = −α∇p+ Su,1p +

+ ∇ ·
(
αρνeffT · (∇u + (∇u)T − 2

3
(∇ · u)I)

)
(3.3.24)

with the source terms Sα,1p, Su,1p defined similarly to 3.3.3, 3.3.7 yet without
the terms that pertain to mass or momentum transfer with another fluid phase:

Sα,1p =
1

ρ

(
α
∂

∂t
ρ+ αu ·∇ρ

)
(3.3.25)

Su,1p = −K1p,s · u + αρg − ξu (3.3.26)

Given that the structure is immovable, the time derivative term is absent
from the continuity equation and the phase fractions (of fluid and structure)
are constant in time. Thus, this equation does not need to be solved. However,
it used to construct the pressure equation as seen for the two-phase algorithm.
By discretizing the momentum matrix in the same way as previously discussed:

M̂u = b(p)⇒
⇒ M̂Du = −M̂ODu− α∇p+ b∗ ⇒

⇒ u =
1

A
(H− α∇p) (3.3.27)

with A ≡ M̂D the field of diagonal coefficient of M , H = −M̂ODu + b∗

the sum of the explicit evaluation of the off-diagonal terms with the latest
available u and of the source terms b∗, as seen before. The pressure equation
is constructed by substituting 3.3.27 in the continuity equation 3.3.23:

∇ ·
(
α

A
H− α2

A
∇p

)
= Sα,1p (3.3.28)

The fundamental steps of the solution algorithm follow the same logic of the
two-phase approach, namely: 1) discretize the momentum equation to obtain
M̂ , b∗; 2) solve the pressure equation 3.3.28; 3) update the velocity with the
now available pressure gradient via 3.3.27. The actual iteration procedure, as
for the two-phase algorithm, is clearly outlined in subsection 3.3.3. Note that,
out of consistency with the two-phase approach, no velocity predictor is ever
calculated (i.e. the momentum equation is never solved on its own).
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3.3.1.5 Remarks on a cell-centered and face-centered momentum
treatment

The developed algorithm employs a standard co-located variable treatment,
meaning that all variables are stored at cell centers. Thus, during the update
of the velocity at the pressure-correction step via equation 3.3.17 (or 3.3.20 for
the standard OpenFOAM algorithm), pressure gradients need to be evaluated
at cell-centers. However, this process is know to be sensitive to the employed
interpolation schemes, as numerical artifacts such as field “checkerboarding”
[59] can arise. Part of the reason for this lies in the fact that the most natural
definition of a gradient over a mesh is at cell-faces, rather than at cell centers.
This is one of the reasons why most early CFD approaches relied on stag-
gered grids, wherein the velocity field, which is reconstructed from pressure
gradients, was stored at cell faces, rather than cell centers. A staggered grid
approach solves the issue of potential field staggering in its entirety, but has
the drawback of a more cumbersome implementation and less flexibility when
it comes to unstructured meshes, so co-located variable treatments generally
prevailed in the CFD domain. To address this issue, a variant of a Rhie-Chow
interpolation technique [60] is employed by OpenFOAM based algorithms, in-
clusive of the presently developed one.
However, given that multi-phase simulations prove to be further sensitive to the
issue of field checkerboarding in certain occasions, Weller proposed a different
approach for velocity reconstruction [61], which resembles a staggered grid
approach in “spirit”.

The core idea is to reconstruct the velocity fields from superficial phase
fluxes φi. In principle these fluxes represent the face-interpolated velocities
dotted with the surface area vectors, namely φi = u|f · Sf . By interpolating
both sides of equation 3.3.17 and dotting them with Sf we obtain an expres-
sion that relates φi to the surface-normal pressure gradient at the cell faces,
which is available directly after the solution of the pressure equation with no
additional cell-center interpolation operations. Weller thus proposes to recon-
struct the cell-center velocity fields from the face-centered superficial volumet-
ric fluxes φi, which are obtained from the face-interpolated, face-surface-area-
dotted pressure-velocity relationship, namely equation 3.3.17 in our case. This
reconstruction to cell-centers can be achieved via [19]:

u =

(∑
f

(nf ⊗ Sf )

)−1

·

(∑
f

nf (u|f · Sf )

)
(3.3.29)

with nf being the face normal vector. This approach is implemented in
some multi-phase OpenFOAM solvers and is referred to as face-momentum
approach, as it tries to mimic some of the advantages of a staggered grid ap-
proach. The face-momentum approach was found to reduce phase fraction
checkerboarding effects in most circumstances where it would otherwise oc-
cur and enhance stability [61]. For this reason, a face-centered variant of the
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algorithm has also been developed. It should however be noted that, as the
superficial fluxes are obtained from a face-interpolated version of the pressure-
velocity relationship, a certain degree of loss of accuracy is expected. For
this reason, both a traditional and a face-momentum-based versions of the
developed pressure-velocity coupling algorithm were investigated during the
verification process, as discussed in section 3.4.

3.3.2 Solution of the enthalpy equation

Let us start by recalling the formulation presented in 3.1.3 for a two-phase
flow:

∂

∂t
(αiρihi) + ∇ · (αiuiρihi) =

∇ · (αiκeff,iTi∇Ti) + αi
∂

∂t
p+ αiρiui · g+

+ αiqint,i − Γi→jhi − qi→j − qi→s (3.3.30)

with the phase transfer terms defined as in equations 3.2.26, 3.2.32,:

qi→j ≡ qi→∂ = A′′′∂ Hi∂ (Ti − T∂) (3.3.31)

qi→s = fiA
′′′
s His (Ti − Ts) (3.3.32)

After the solution of the continuity equation and pressure-velocity coupling
for the prediction of the new phase fractions αi, velocities ui, pressures p and
densities ρi resulting from the application of a certain equation of state, an
equation in the form of 3.3.30 can be solved on its own. However, while the
solution variable consists of the enthalpy hi, the fluid temperature Ti figures
as well. While these terms can in principle be evaluated explicitly, an implicit
formulation of these terms (especially for the diffusive term) would prove sig-
nificantly more beneficial for the convergence properties of the linear system
representing the enthalpy equation when solved via iterative means. For this
reason, by recalling the definition of heat capacity cp,i = ∂hi/∂Ti and neglect-
ing its spatial variations, the diffusive heat flux term is approximated as:

αiκeff,i∇Ti ≈ αi
aeff,i
ρi

∇hi (3.3.33)

in which aeff,i ≡ κeff,i/(ρicp,i) is the effective thermal diffusivity of the fluid.
This formulation allows for an implicit treatment of the diffusive term. A
similar approach is used for the treatment of the heat source terms 3.3.31,
3.3.32.

A Taylor expansion of the enthalpy around the latest available fluid tem-
perature T0 yields:

h(p, T ) ≈ h(p, T ) + cp(p, T0) (T − T0)⇒

⇒ T ≈ T0 +
1

cp(p, T0)
(h(p, T )− h(p, T0)) (3.3.34)

66



By taking advantage of this result, the heat source terms can be implemented
as:

qi→∂ = A′′′∂ Hi∂

(
Ti +

1

cp,i
(hi − hi(p, Ti))− T∂

)
(3.3.35)

qi→s = fA′′′s ,iA
′′′
s His

(
Ti +

1

cp,i
(hi − hi(p, Ti))− Ts

)
(3.3.36)

in which hi is the solution variable for which the enthalpy equation is dis-
cretized, while hi(p, Ti) is the value of the specific enthalpy evaluated at Ti,
namely the latest available enthalpy value. Given that these source terms
figure with a negative sign on the RHS of the enthalpy equation and given
that the coefficients that multiply hi, namely A′′′∂ Hi∂/cp,i and fiA′′′s His/cp,i are
always positive (or null at worst), this semi-implicit treatment will always
beneficially contribute to the discretized enthalpy matrix diagonal, improving
convergence properties.

On a last note, as seen for the momentum equation, the spurious heat
source resulting from possible continuity errors ξihi is accounted as well. The
final formulation of the implemented enthalpy equation thus is:

∂

∂t
(αiρihi) + ∇ · (αiuiρihi) =

∇ ·
(
αi
aeff,i
ρi

∇hi

)
+ αi

∂

∂t
p+ αiρiui · g+

+ αiqint,i − Γi→jhi − qi→∂ − qi→s − ξihi (3.3.37)

3.3.3 Coupling algorithm

The overall solution strategy that was developed is presented in Figure 3.3.1.
It is based on a merged PISO-SIMPLE [48][49] algorithm (PIMPLE).
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Figure 3.3.1: flowchart of the solution algorithm. Red arrows indicate that a section (out-
lined in bold black) consists of a loop (governed by certain conditions). On the rightmost
side, the different flowchart steps are logically grouped into what we refer to as “compo-
nents”. These were subject to scalability analyses, as discussed in section 3.6.

Within each time step, a certain number of outer iterations (logically equiv-
alent to SIMPLE iterations, even though they are more generally referred to
by the global algorithm name, i.e. PIMPLE iterations) can be performed to
resolve the coupling between velocity, pressure and energy. In particular, each
outer iteration consists of the following steps:

1. flow regime map update. In this context, each flow regime acts as a
place-holder for different models used to compute the inter-phase transfer
coefficients. At this step, the spatial extent of every regime is assessed
based on the flow regime map;

2. models update. These consist of: fluid-fluid drag factor Kij, fluid-
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structure drag factors Kis, fluid bulk-interface heat transfer coefficients
Hi∂, fluid-structure heat transfer coefficients His, fluid-fluid interfacial
area density A′′′∂ , fluid-structure contact fractions fA′′′s ,i and characteristic
fluid dimensions Dh,i. This update is performed based on the updated
spatial extent of the regimes;

3. solve phase fractions. the MULES algorithm is used to compute the
new phase fractions αi and volumetric fluxes φα,i by solving equation
3.3.4. This is done starting from the existing face-centered superficial
fluxes φi and the latest available evaluation of the phase fraction source
terms Sα,i. The algorithm can be iterated multiple times within each
outer iteration to allow for sub-cycling. Sub-cycling consists in solving
the phase fraction equation a number N of times over a time step N
times smaller than the global time step, which allows to ease the time
step limitations imposed by the CFL condition;

4. construct momentum equations. This consists in obtaining the co-
efficient matrices M̂i and source terms bi in 3.3.11. The matrix diagonal
coefficients Ai and the modified coefficients A∗∗i obtained via 3.3.16 as
used in equations 3.3.17, 3.3.18 are thus obtained as well;

5. pressure corrector loop. This is logically equivalent to a PISO loop
and is performed a number of times that can be either user-selected or
determined at run time by the convergence properties of the solution.
It fundamentally serves the purpose of solving the pressure equation by
iterating on the non-linearities of the explicitly evaluated off-diagonal
contributions and source terms Hi. Please note that the modified diag-
onal coefficients A∗∗i are never updated in this loop as the momentum
equations are discretized once per outer iteration (i.e. the non-linearities
of the diagonal coefficients are resolved by the outer iteration loop);

5.1. construct pressure equation This consists in assembling the
pressure equation as of 3.3.18. It requires the evaluation of Hi via
equations 3.3.15 for each phase (to be evaluated explicitly with the
latest available phase velocities). This also requires the evaluation
of the phase fraction source terms Sα,i computed as of 3.3.3;

5.2. pressure non-orthogonal corrector loop. This is performed to
resolve the effects of possible mesh non-orthogonality, i.e. the degree
to which, for each mesh face, the face normal is not parallel to the
segment connecting the cell centers of the cells that share the face.
This was extensively covered by Jasak [21] and is not discussed here.
The number of non-orthogonal iterations is user-selected;
5.2.1. solve pressure equation;

5.3. update phase velocities. Once the pressure is computed and the
pressure gradient available, use equations 3.3.17 to calculate the
new phase velocities ui and superficial fluxes φi;
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6. update mass transfer term. The new mass transfer term Γi→j is cal-
culated via 3.2.36, which requires the explicit estimation of the interfacial
heat fluxes qi→∂ as well as the adjusted latent heat Ladjij ;

7. update structure energy models. The models used to describe the
structure enthalpy are updated/solved as discussed in sub-section 3.2.4
to yield the new structure surface temperature Ts;

8. solve phase enthalpies. Construct and discretize the enthalpy equa-
tions 3.3.37 and solve them to update the fluid enthalpies hi. Update
the fluid thermo-physical models to update fluid density, viscosity, heat
capacity, thermal conductivity, etc.;

3.4 Algorithm verification
While the verification should in principle cover both fluid-dynamics and energy,
the thermal part of the solver relies on well established OpenFOAM matrix
assembly and solution operations. Thus, the verification covers only the fluid-
dynamics aspect of the solver, with particular regard to the developed pressure-
velocity algorithm.

The chosen verification approach consists in the Method of Manufactured
Solutions (MMS), which has enjoyed some utilization in the field of multi-
phase solvers [62] and is considered to be among the most flexible verification
approaches. A detailed explanation of the MMS is out of scope of the present
work, as it is a standard, albeit complex verification approach that has been
extensively covered in other works [63]. Nonetheless, the general idea behind
such approach is introduced in subsection 3.4.1 while the results of the verifi-
cation effort are summarized in subsection 3.4.2 for a variety of cases.

3.4.1 The Method of Manufactured Solutions

Let us consider a computer code implementation that solves a problem for
an unknown x governed by an equation represented in an operator form as
M̂x = b. The MMS can be summarized as follows:

1. select/construct an analytical target solution x0 that the code is sup-
posed to approximate;

2. derive the analytical source term s that satisfies s = M̂x0 − b, which is
possible since the analytical form of M̂ is known;

3. implement the analytical source term s in the code;

4. impose a set of boundary conditions that reflect the behaviour of x0 at
the domain boundaries;
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5. compare the solution x provided by the code with the target solution
x0 and draw conclusions based on a set of verification acceptance or
rejection criteria.

The choice of x0 is in principle arbitrary and not bound by the physical proper-
ties that the equation is supposed to model. Nonetheless, following the purpose
of a verification effort, any x0 should satisfy a certain number of properties,
most importantly: 1) be composed of smooth analytic functions to ensure that
the theoretical order-of-accuracy can be attained (which ties into verification
criteria discussed later); 2) be general enough and have a non-trivial number of
derivatives so to exercise all terms of the governing equation; 3) do not compro-
mise code robustness by predicting values outside the intended solution range
(e.g. unbounded phase fraction values). Furthermore, since boundary condi-
tions are an integral part of the solution procedure, the verification should be
repeated for different sets of boundary conditions.

With regards to verification acceptance criteria, the one employed in this
work consists in the assessment of the order-of-accuracy of the numerical so-
lution. This translates into evaluating the solution with increasingly refined
meshes, and to assess the order-of-accuracy q, which quantifies how numeri-
cal errors ε scale as a function of a characteristic mesh dimension h, so that
ε = O(hq). The verification criterion thus consists in assessing whether or
not the observed order-of-accuracy reflects the theoretical order-of-accuracy,
which depends on the employed set of equation discretization and interpola-
tion schemes. In particular, the errors considered in this work consist of the
L2 norm error:

εL2 =

√∫
Ω

(x− x0)2dΩ (3.4.1)

and the L∞ norm error:

εL∞ = sup{|x− x0|} (3.4.2)

3.4.2 Results

The investigated domain consists of a 2-D square domain of side L = 0.1 m
with a uniform square meshing. The following expressions have been selected
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for phase fractions αi, phase velocities ui and pressure p:

αs = x+ y;

α1 = 0.5 + 2.5x cos(π(10x− 4t))

α2 = 1.0− α1 − αs
u1,x = 0.25sin2(10πy)

u1,y = 0.1sin2(10πy)sin2(10πx)

u2,x = u1,x

u2,y = −u1,y

p = 1 · 105 + (x− 0.1) · 104

(3.4.3)

This choice exercises all the terms of the governing equations, including all
derivative terms.

With regards to boundary conditions, a number of combinations were in-
vestigated. The results presented in this section were obtained via Neumann
boundary conditions for pressure at y = 0, y = L, x = 0 and for α1,2, u1,2

at y = 0, y = L, x = L, while Dirichlet boundary conditions were imposed
for pressure at x = L and for α1,2, u1,2 at x = 0. Results comparable to
the ones that are presented were obtained for other combinations of boundary
conditions.

Fluid thermo-physical properties and inter-phase coupling coefficients were
set so that the contributions of all terms in the momentum equations are
comparable in magnitude. The resulting analytical source terms for the phase
fraction equations, momentum equations and the pressure equations are not
reported for conciseness, given the non-trivial amount of derivative operators
to be evaluated.

Time-dependent simulations were run from 0 s to 6 s and the L2 and L∞
norms for all the involved fields were averaged over said time duration.
Progressively refined meshes from 16 to 128 cells per side were investigated. In
particular, the performance of the cell-centered variant versus the face-centered
variant of the developed algorithm were compared.
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Figure 3.4.1: errors ε (left) and associated order-of-accuracy q (right) computed by the L2

(black) and L∞ (red) norms for the various quantities of interest with the cell-centered
algorithm. Errors are absolute and dimensional, namely: α (−), p (Pa), u1,u2 (ms )

Figure 3.4.2: errors ε (left) and associated order-of-accuracy q (right) computed by the L2

(black) and L∞ (red) norms for the various quantities of interest with the face-centered
algorithm. Errors are absolute and dimensional, namely: α (−), p (Pa), u1,u2 (ms )

Since a linear scheme was employed for the discretization of derivatives and
for variable face-interpolation in the momentum and pressure equations, the
theoretical order of accuracy for pressure and velocity should be 2. However,
this is expected to be affected by the coupled nature of the equations with other
equations discretized with lower schemes. In particular, the theoretical order
of accuracy for the phase fraction equations cannot be exactly determined
due to the iterative nature of the flux correction technique employed by the
MULES algorithm. Nonetheless, the order of accuracy should lie between 1
due to the upwind first order scheme used for the bounded fluxes estimation,
and 2 due to the scheme by Van Leer [64] used for the high-order correction
fluxes.

Based on these considerations, the verification of the cell-centered version
of the algorithm is deemed satisfactory, also in the light of the small magni-
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tudes of the errors. This holds true for both the L2 and L∞ norms. How-
ever, the same does not appear to hold for the face-momentum algorithm, as
the order-of-accuracy deteriorates for fine meshes. This is consistent with a
larger diffusive contribution of the interpolation of velocity coefficients and
off-diagonal velocity source terms at cell faces.

As a matter of fact, the diffusivity of the face-momentum algorithm is ex-
acerbated by having set fluid thermo-physical properties so to result in compa-
rable contributions from the different terms of the momentum equation. This
results in a rather large choice for the viscosity of the fluids of µ1,2 ' 0.1Pa s,
in the range of e.g. motor oils. A new set of less diffusive simulations was then
performed with µ1,2 ' 1 · 10−3Pa s, more compatible with the applications
envisioned for the algorithm presented here. The results are presented in Fig-
ure 3.4.3 and show that the order of accuracy significantly improves for the
face-momentum algorithm. It should also be noticed that in all cases, degra-
dation of the order of accuracy happens for error magnitudes below practical
relevance.

Figure 3.4.3: errors ε (left) and associated order-of-accuracy q (right) computed by the L2

(black) and L∞ norms for the various quantities of interest with the face-centered algorithm
for a lower fluid viscosity. Errors are absolute and dimensional, namely: α (−), p (Pa),
u1,u2 (ms )

3.5 Pressure-velocity coupling algorithm perfor-
mance

To assess the performance of the developed pressure-velocity coupling algo-
rithm, the existing standard OpenFOAM algorithm has been used as a refer-
ence. As a first test case, the 1-D motion of a dispersed fluid via advection by
a carrier fluid through a porous structure was investigated.

The initial and boundary conditions for the variables of interest in the
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domain of length L = 2 m are:

αs (x, 0) =

{
0 x < 0.5 ∨ x > 0.5

0.5 0.5 ≤ x ≤ 0.5

α1 (x, 0) =

{
1 x < 0.5 ∨ x > 0.5

0.25 0.5 ≤ x ≤ 0.5

α2 (x, 0) =

{
0 x < 0.5 ∨ x > 0.5

0.25 0.5 ≤ x ≤ 0.5

u1 (x, 0) = 0.5
m

s
(3.5.1)

u2 (x, 0) = 0
m

s
(3.5.2)

u1 (0, t) = 0.5
m

s
(3.5.3)

p (2, t) = 1 · 105 Pa (3.5.4)

with all other variables having a null gradient at the boundaries.
This simplified test allows to establish the general trends to be expected as

certain system properties are varied. Results are reported in Figure 3.5.1. The
left plots reports the last initial pressure residual at the last outer iteration for
each time step, which is used as a measure of how well the pressure-velocity
coupling is resolved. The right plots represents the total number of pressure
linear solver iterations performed within the time-step. It is recalled that, as
velocity is reconstructed from pressure, the pressure equation residual is the
only indicator of convergence of the pressure-velocity coupling. All simulations
where performed with 3 outer iterations per time step and 3 pressure correctors
per outer iteration. The Generalized Algebraic Multi-Grid (GAMG) linear
solver was used for the cases reported here, yet the same trends were observed
with the Preconditioned Bi-conjugate Gradient Stabilized (PBiCGStab) linear
solver. The same linear solver convergence criteria were used in both cases.

As the developed algorithm is based on Partial Elimination ideas, which are
designed to improve performance in scenarios involving large inter-phase drag
coefficients, the following cases were investigated. The only force acting on the
fluids (excluding pressure gradients) consists of an inter-phase drag modelled as
K12 = 1 ·104 kg

m3s
and K12 = 1 ·105 kg

m3s
for the the first and second row in Figure

3.5.1, respectively. Since the developed algorithm alters both the pressure
equation coefficients and source terms, the last row investigates the effect
of larger source terms due to e.g. fluid-structure drag, treated explicitly for
this test. In particular, a diagonal fluid-structure drag factor with magnitude
|K1s| = 5 · 103 kg

m3s
to be comparable in magnitude with the fluid-fluid drag

was used.
Overall, the developed algorithm appears to perform consistently better

in these scenarios in terms of pressure equation residuals and of number of
necessary iterations when compared to the standard OpenFOAM algorithm
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Figure 3.5.1: evolution of pressure initial residuals r at the last outer iteration and last
pressure corrector (left column) and number of pressure iterations np,iter (right column)
within each simulation time step. These are compared between the novel and existing PEA
implementations for three different cases: small drag factor K12 = 1 · 104 kg

m3s with no other
forces acting on the fluids (top row); large drag factor K12 = 1 ·105 kg

m3s with no other forces
acting on the fluids (middle row); large drag factor with the addition of explicit virtual mass
forces due to a virtual mass coefficient of 0.5 and large fluid-structure drag K1s = 5 ·103 kg

m3s
(bottom row).

(which is also based on Partial Elimination, yet implemented differently, as
thoroughly discussed in sub-sub-section 3.3.1.3).

The performance of the algorithm has then been assessed for two more
realistic scenarios. The first consists in a 1-D liquid sodium boiling transient
in a bundle of electrically heated pins. The modelling details and correlation
choices are specific to liquid sodium are the same as those used for the mod-
elling of validation experiments that covered in chapter 4 (with the difference
that the model used for these tests is 1-D rather than 2-D). Results are pre-
sented in Figure 3.5.2 for both the developed and the standard OpenFOAM
pressure-velocity coupling algorithms. The start and end of the boiling can be
inferred from the increase in pressure equation residuals and total number of
pressure equation linear solver iterations in time.
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The overall results observed before still apply, with a significant reduction
in both residuals and linear solver iterations. For this particular case, a ∼ 5%
reduction in simulation time was observed as a consequence of the reduced
number of pressure equation iterations.

Figure 3.5.2: evolution of pressure initial residuals r at the last outer iteration and last pres-
sure corrector (left) and number of pressure iterations np,iter (right) within each simulation
time step for a 1-D sodium boiling transient.

The second realistic scenario consists in a modified version of a standard 2-D
OpenFOAM test case bubbleColumn, consisting of air bubbles injected at
the bottom of a column of stationary water. Results for the two algorithms are
presented in Figure 3.5.3 for the first 2s of simulation. Due to the considerably
lower magnitude of the coupling between the phases, partly due to the lower
slip velocity, there are no noticeable differences between the two algorithms.
This case serves as an example to show that in those scenarios where inter-
phase drag does not play a significant role between the phases, the developed
algorithm performs similarly to the standard OpenFOAM one.

Figure 3.5.3: evolution of pressure initial residuals r at the last outer iteration and last pres-
sure corrector (left) and number of pressure iterations np,iter (right) within each simulation
time step for a modified 2-D bubbleColumn OpenFOAM test case.
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3.6 Parallel performance
While it is true that one of the primary goals of a coarse-mesh approach is
to reduce computational burdens, the modelling of large engineering systems
can still result, depending on the degree of detail, in several tens of millions of
mesh cells.

For parallelization, the code employs Message Passing Interface (MPI)-
based domain decomposition [65] enabled by the OpenFOAM framework. The
scaling performance provided by this framework depends on the equations
that are solved, and on the steps that are taken to solve them. This is why
scaling performances have been investigated. In particular, the strong scaling
characteristics of the solver and of the different algorithm components (with
reference to Figure 3.3.1) were assessed. As a reminder, strong scaling consists
in evaluating the performance of a code for a fixed problem (i.e. mesh) size
while varying the number of computer cores used for the parallel calculation.

A test case that could stress all of the different components of the solver
was devised. It consists of a 3-D cubic domain with one face acting as an
inlet and the opposite face as an outlet. Two structures modelled as isotropic
porous media are defined in the two cube halves contacting the inlet and outlet.
These are referred to as “upwind” and “downwind” structures respectively. The
surface temperatures of both structures are set to constant values so that
the upwind half is above a prescribed fluid saturation temperature and the
downwind one below said temperature. The thermo-physical properties and
correlations that are chosen for modelling drag and heat transfer were that
of liquid sodium employed for boiling investigations discussed in chapter 4.
A fictitious regime map consisting of five identical regimes (i.e. prescribing
the same correlations for drag and heat transfer) depending on the vapour
phase volume fraction is provided to test the intensiveness of the cell-by-cell
assessment of the flow regime map. This test case was overall devised and
adjusted so to lead to a numerically steady-state boiling scenario.

Strong scaling performance was assessed with a mesh of 1283 ' 2 · 106

cells decomposed on a varying number of cores, ranging from 32 to 1024. A
further set of simulations on a mesh of 2563 ' 16 · 106 up to 4096 cores was
also performed. The scalability results were in line with those established on
the smaller mesh, so that only the former are presented. Simulations were
performed on a Cray XC-50 supercomputer operated by the Swiss National
Supercomputing Centre (CSCS). The results are summarized in Figure 3.6.1
and report the total run time as well as the run time of each code section, re-
ferred to as "component" as reported in Figure 3.3.1, as the number of threads
is varied. For a better understanding of the trends, the parallel efficiency of
the algorithm is also reported. In this context, the parallel efficiency for a
given case i is a measure of the simulation speed-up with respect to a case j
performed on a different number of threads:

eP,i =
ti
tj

NT,i

NT,j

(3.6.1)
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with t being the total simulation run time, NT the number of threads used
for the simulation. Parallel efficiency should ideally be of the order of 100%
or greater, meaning that e.g. a doubling of the number of threads results in
halving of the total run time.

Figure 3.6.1: strong scaling results for a mesh of 1283 cells. These consist of the component
run times (right) and parallel efficiencies (left) in relationship to the amount of threads NT
used for the simulation. Additional axes in terms of cells per thread NC

NT
are provided for

ease of discussion. By "component" we mean a specific block of code with reference to what
is defined in Figure 3.3.1.

It can be observed that the algorithm as a whole as well as its individual
components scale well up to 8192 cells per core, after which the parallel ef-
ficiency degrades, especially for the pressure-velocity coupling and MULES
algorithms. This is expected for OpenFOAM-based solvers, which are known
to scale poorly below ' 10000 cells per thread.

When it comes to the impact of individual solver components, a clear trend
emerges. The most computationally demanding components are, in descending
order, the pressure-velocity coupling algorithm, the MULES algorithm, the
energy equation solution, and the update of momentum and heat transfer
coefficients based on the regime map. However, the update of the regime map
itself scales significantly more than linearly, as observed by the values of the
parallel efficiency above unity. This is attributed to the fact that the regime
map update relies on a considerable amount of operations to be performed
on a cell-by-cell basis. This is suspected to cause a relatively large number
of cache misses, which decrease as the amount of cells per thread (and thus
cache requirements) is reduced. This type of “superlinear” scaling was similarly
observed in some parallel applications in other computational domains and
found to be partly attributable to cache-misses [66]. Nonetheless, even for
more substantial counts of cells per thread, the overall cost associated with
the regime map update is acceptable.
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Chapter 4

Validation against sodium boiling
experiments

4.1 Introduction
The present chapter covers the application of the code and algorithms pre-
sented in the previous chapters for the simulation of a number of sodium
boiling scenarios, and their validation against experimental data.

Section 4.2 discusses the simulation and comparison against experimen-
tal results of quasi-steady-state boiling experiments performed at the Joint
Research Centre (JRC) in Ispra, Italy [67] in heated tubular test sections. Be-
cause of the quasi-steady-state nature of these experiments, the outcome of
calculation results is mostly dependent on just a handful of physical models,
namely two-phase pressure drop multipliers, latent heat, and saturation tem-
perature models. In section 4.3, the results obtained by the code are compared
against a transient boiling experiment carried out at the KNS experimental
facility at the Kernforschungszentrum Karlsruhe [68], which allows for a more
thorough code validation. The comparison also allowed to perform a prelim-
inary qualitative sensitivity study of the calculation results against a variety
of both geometric and physical modelling choices. Conclusions regarding the
results presented in this paper, along side future perspective work directions
are presented in section 4.4.

4.2 Steady state validation
The present section discusses the validation efforts performed against quasi-
steady-state boiling scenarios. In particular, the experiments under consid-
eration are those performed at the Joint Research Centre in Ispra, Italy, in
the 1980s, concerning sodium boiling [67]. These were carried in the wider
then-existing European framework of Sodium-cooled Fast Reactor (SFR) de-
velopment (a notable example being the German SNR-300 SFR), yet also to
further knowledge concerning a fluid, sodium, whose use as a coolant was
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enjoying increasing popularity outside of the nuclear domain.

4.2.1 Description of the experiments

The experimental setup at JRC, Ispra consisted of a closed loop with inter-
changeable heated test sections so that boiling in different flow geometries
could be investigated. The overall description of the test loop can be found
in [67]. A number of different test sections were experimented with, ranging
from tubular and annular ones, to hexagonal wire-wrapped pin bundles.

With regards to the set of experiments that were used for this validation
stage, these consist of quasi-steady-state boiling in the tubular test-sections.
These were performed for a number power levels, and were used to assess the
dependence of velocity on the total two-phase pressure drops. These tests
are referred to as quasi-steady-state due to the fact that while boiling is an
inherently transient phenomenon, the experimental conditions were such to
allow a meaningful collection of time-averaged data.

These experiments represents a great opportunity for validation purposes
as most two-phase multiplier models depend exclusively on the liquid and fluid
vapour flow qualities, which, physically speaking, depend almost exclusively
on the thermo-physical properties of the fluid, on the liquid inlet properties,
and on the input power.

The geometry of the test section is illustrated in Figure 4.2.1. In particular,
it consisted of a tube of 6 mm in inner diameter and 29 mm in outer diameter.
Different input power levels resulting in (inner) wall heat flux densities ranging
from 106 W/cm2 to 250 W/cm2 were investigated. For each power level,
different inlet mass flow rates were prescribed by adjusting the inlet pressure,
and, for each velocity, the overall pressure drop over the test assembly was
measured. Data points span both one-phase and two-phase flow regimes.

4.2.2 Computational modelling

The system was represented as a 1-D model spanning the entire geometry as
reported in Fig. 4.2.1. With regards to the condenser, it was modelled via
a tapered pyramid of progressively larger volumes towards the outlet, yet its
meshing is still 1-D, in the axial direction. Boundary conditions for each case
consisted of fixed outlet pressure, fixed liquid inlet temperature and velocity,
and inlet pressure gradient prescribed to be consistent with the inlet velocity
(i.e. fixedFluxPressure in OpenFOAM). All other quantities were pre-
scribed to have a null gradient at system boundaries. The modelling of the
condenser is necessary as, if the model stopped short at the tube outlet (where
two-phase flow exists), it would be inaccurate to prescribe a fixed pressure at
such location. With regards to measured quantities, the overall pressure drop
(exclusive of the hydrostatic component) between points P11 and P14 in Fig-
ure 4.2.1 was monitored.
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Figure 4.2.1: details of the tubular test section of the JRC Ispra experimental loop.

As mentioned earlier, the advantage of a quasi-steady-state scenario is that
the final results are expected to be independent of a number of parameters, as
the final vapour quality would depend exclusively on an enthalpy balance. As
a result, heat transfer coefficients and inter-phase drag coefficients play little
role in shaping the final results. The focus is thus shifted on few important
parameters such as: liquid-structure drag coefficient fd,ls; two-phase drag mul-
tiplier for the liquid phase φ2

l ; and the thermo-physical properties of the fluid,
inclusive of its pressure-temperature saturation curve and the latent heat of
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evaporation Ll→v. The subscripts l and v will be used to refer to the liquid
and vapour phase respectively, unless discussing general models, for which i
and j will be used.

With regards to the liquid-structure drag drag coefficient fd,ls, due to the
tubular geometry of the system, the Blasius correlation was used:

fd,ls =
0.316

Re0.25
ls

For the liquid two-phase pressure drop multiplier φ2
l , the following five

models were investigated:

• Lockhart-Martinelli [69], a well-known correlation which relates the two-
phase multiplier of the i-th phase φ2

i to a dimensionless parameters X2
i ,

called the Lockhart-Martinelli parameter, defined as:

X2
i =

(
µi
µj

)0.2(
1− ẋj
ẋj

)1.8
ρj
ρi

(4.2.1)

and:
φ2
i = 1 +

C

Xi

+
1

X2
i

with C being a parameter that ranges between 5 and 20 depending on
the postulated flow regime of each phase (whether turbulent or laminar,
allowing for 4 possible combinations). Generally C = 20 is used for most
applications.

• Lottes-Flinn, which predicts:

φ2
i =

1

(1− αNj )2

This was proposed for small values of the gas phase flow quality. With
specific regards to sodium boiling however, Nguyen proposed the follow-
ing relationship between αNj and the Lockhart-Martinelli parameter of
the i-th phase to extend it to high-phase fraction boiling flows [70]:

αNj = (1 +X0.8
i )−0.378

• Kaiser [71], a correlation developed for sodium-boiling in pin bundle
geometries that relies on the Lockhart-Martinelli parameter. This was
developed for specific application to the liquid phase, so the l subscript
is used in place of i:

ln φl = 1.48− 1.05 ln
√
Xl + 0.09

(
ln
√
Xl

)2
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• Kottowski-Savatteri [67], a correlation developed for Sodium boiling in
pin bundle geometries that relies on the Lockhart-Martinelli parameter.
Similarly to the work by Kaiser et al., this was developed for specific
application to the liquid phase l:

log10 φl = 0.6252− 0.5098 log10 Xl + 0.1046 (log10 Xl)
2

• Chenk-Kalish [72], a correlation developed for potassium boiling that
relies on the Lockhart-Martinelli parameter, developed for the liquid
phase l:

ln φl = 1.59− 0.518 ln Xl + 0.0867 (ln Xl)
2

With regards to the thermophysical properties of the liquid and vapour sodium,
the proposed data compiled by Fink and Leibowitz [73] was used for density,
heat capacity, molecular viscosity, latent heat and the pressure-temperature
saturation curve. In particular, the latent heat of evaporation is evaluated as:

Ll→v(p) = 393370

(
1− Tsat(p)

Tc

)
+ 4398600

(
1− Tsat(p)

Tc

)0.29302

with QL0, ij in J/kg, temperatures inK, Tc = 2503.7K the critical temperature
of sodium and Tsat its saturation temperature at the current system pressure.
The pressure-temperature saturation curve was modelled as [73]:

ln p = 11.9463− 12633.7

T
− 0.4672 ln T

with Tsat in K, p in MPa.

4.2.3 Results

The simulations involved the reproduction of the experiments performed at
four different input power levels, resulting in wall heat fluxes of 138 W/cm2,
159 W/cm2, 175 W/cm2, 250W/cm2, each with varying levels of inlet liquid
flow velocities. Each set of simulations performed at a different power level
will be referred to as “case”.

The results are summarized in Figure 4.2.2. For all cases, the flow at the
highest simulated inlet velocity results in a one-phase flow, and thus the overall
pressure drop decreases as the velocity is reduced. However, below a certain
threshold that depends on the input power level, the liquid velocity is insuffi-
cient to prevent boiling, and the pressure drop increases due to the two-phase
flow circumstances. In particular, the lower the velocity, the higher the vapour
quality. Physically though, the pressure drop is due to reach a maximum as
the pressure-velocity curve approaches that of a one-phase vapour flow. This
can be clearly observed in the cases with wall heat fluxes of 158 W/cm2 and
175 W/cm2, as they were run also for particularly small inlet velocities.
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With regards to the actual comparison between the experimental and the cal-
culated results, a good agreement can be observed, with the two-phase pressure
drop from Kottowski and Savatteri most accurately reproducing the results.
This is not surprising, as this correlation was developed specifically starting
from the data of these experiments [67]. The second best performing correla-
tion is the one developed by Kaiser, also based on sodium boiling experiments
in tubular and pin bundle geometries. The correlations by Lockhart and Mar-
tinelli, Lottes and Flinn also prove to yield very comparable results. With
regards to the latter, however, the Nguyen correlation for the vapour phase
fraction was used. It was in fact observed that using the original correlation
by Lottes and Flinn tends to overestimate the two-phase pressure drop at high
vapour volume fractions, while yielding results in line with the other correla-
tions at lower phase fractions. The Nguyen correlation was devised to adjust
the Lottes-Flinn model specifically for sodium boiling scenarios. Similar find-
ings were observed by Ninokata with the SABENA code [11]. On the other
end of the spectrum, the correlation by Chen and Kalish was developed for
experimental data regarding potassium alloys, and proves to overestimate the
overall pressure drop in all circumstances.

Figure 4.2.2: Comparison between the calculation results obtained by the various pressure
drop multiplier correlations against experimental results for each of the four different wall
heat fluxes. For each wall heat flux, calculations were performed by varying the inlet velocity
in steps of 0.25 m/s.

The latent heat and saturation pressure-temperature relations were found to be
important quantities in shaping the calculated curves. The higher the pressure,
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the higher the corresponding saturation temperature, which in turn reduces
the overall vapour production, its mass flow rate, and ultimately the overall
pressure drop. Conversely, the evaporation latent heat model predicts smaller
values of the latent heat for higher saturation temperatures (consistently with
the fact that e.g. at the critical point, the latent heat is null by definition),
and thus, for higher system pressures. A smaller latent heat will result in a
larger vapour production, yet the latent heat effects on the overall resulting
pressure drop were found to be significantly smaller than those associated with
the saturation pressure-temperature dependence.

4.3 Transient validation
In order to assess a wider range of functionalities, the focus is now shifted
on the modelling of a sodium boiling experiment that was performed at the
Kompakter Natriumsiede Kreislauf (KNS) experimental facility at the Kern-
forschungszentrum Karlsruhe (now the Karlsruhe Institute of Technology),
Germany, in the 1980s.

The experimental setup and details pertaining the test itself is presented
in subsection 4.3.1. The computational modelling choices in terms of model
geometry and physics model choices are presented in subsection 4.3.2. The
computational results will be presented alongside the experimental ones in
subsection 4.3.3

4.3.1 Description of the experiment

The KNS was originally set up within the broader framework of fast reac-
tor development, specifically for the German SNR-300 Fast Breeder Reactor
development program. The KNS was a sodium loop that allowed for the in-
vestigation of boiling in a variety of assembly geometries under Unprotected
Loss Of Flow (ULOF) conditions. A schematic of the facility in its KNS-37
configuration is presented in Figure 4.3.1. This configuration was dedicated to
the investigation of boiling phenomena in a electrically-heated mock-up 37-pin
bundle.

Among the tests that were performed on the KNS facility in this configura-
tion, the one chosen for this analysis consists of test L22. This test was about
the investigation of sodium boiling subsequent to a fast pump trip transient
representative of possible ULOF conditions. Qualitatively, the test proceeded
as follows. For a certain axial input power profile with no radial tilt and inlet
conditions, a steady state single-phase flow was reached. The pump was then
tripped resulting in a rapid loss of flow, eventually inducing the onset of boil-
ing. Due to the appreciable difference in the power-to-flow ratio between the
assembly bulk and its periphery, the void region was initially limited to the
bulk of the assembly and only minor inlet mass flow oscillations were observed.
As the boiling progressed and the void region extended towards the assembly
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Figure 4.3.1: Schematic of the KNS test loop facility (right) and assembly details (left).

periphery, the increase in pressure drop results in a flow excursion. Among
different quantities that were monitored at some locations throughout the test,
pin surface cladding temperatures proved of great importance. In particular,
a sharp rise in said temperatures was taken as indicative of dryout conditions,
which was used as a criterion to power off the assembly. After power off, the
transient proceeded until flow restoration and eventual end of boiling. The
quantitative technical and transient details are presented in Tables 4.3.1 and
4.3.2.

Assembly data
Number of pins 37
Pin diameter (mm) 6
Pin pitch (mm) 7.6
Flow area (cm2) 11.7
Heated pin length (mm) 900
Unheated pin length (mm)
- top 450
- bottom 200
Maximum linear power (W/cm) 320

Table 4.3.1: Pin bundle specifications.
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test L22 data
Steady state conditions
Average linear power (W/cm) 215.4
Normalized axial power profile 0.38 + 0.62 sin

(
π z+25

900

)
Bundle pressure (bar)
- inlet 2.241
- outlet 1.045
Bulk coolant temperatures (K)
- inlet 653
- outlet 812
Inlet mass flow (kg/s) 3.41
Boiling dynamics
Normalized inlet mass flow

(1 + 0.3003 t)−1.297ramp down until boiling
Time elapsed until (s)
- onset of boiling 6.11
- onset of flow excursion 8.30
- onset of dryout 9.25
- power off 9.45
- end of boiling 12.31

Table 4.3.2: test L22 data. The variables z and t represent the axial distance from the bot-
tom of the heated pin section in mm and the elapsed time since pump trip in s respectively.

4.3.2 Computational modelling

As mentioned earlier, the evolution of the transient is initially shaped by the
radial vapour expansion. Because of this, and as it has already been high-
lighted in other works [40], flow excursions would be significantly anticipated
in a 1-D model. This is due to the fact that in a 1-D model, right after
boiling onset, the entirety of the available flow cross section is already occu-
pied by some fraction of vapour. A 2-D axial-symmetric wedge model was
then adopted, as it allows to refine the radial domain with a much smaller
computational footprint when compared to a full 3-D model.

4.3.2.1 Geometrical modelling and volume averaging

The model consists of a 2-D axial symmetric wedge of 2 degrees of aperture.
The pin bundle was treated with a coarse-mesh approach. Because of differ-
ences between the bulk of the pin bundle and its edge, different properties
were obtained for these two regions. With reference to Figure 4.3.2, the inner
bundle volume fraction and hydraulic diameter were estimated on the basis of
the innermost triangular subchannel, in blue. Conversely, properties for the
bundle edges were estimated on the basis of the highlighted trapezoidal edge
region, in red.

Axially, the model extends from the bottom of the lower unheated pin re-
gion to 50 cm above the top of the upper unheated pin section. The condenser
was not modelled as, experimentally, the vapour volume remained confined
within the bundle, condensing while traversing the cooler upper unheated pin
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Figure 4.3.2: View of the geometric detail of the KNS-37 assembly, with the wrapper par-
tially cut for ease of view. Inner bundle porous properties were calculated based on the
REV highlighted in blue. Outer bundle porous properties were calculated based on the
REV highlighted in red.

bundle region. The 2-D axial-symmetric wedge model is thus composed of
seven regions: 1) two regions (inner and outer, i.e. edge, bundle) for the lower
unheated pins; 2) two regions (inner and outer bundle) for the heated pins);
3) two regions (inner and outer bundle) for the upper unheated pin; 4) the
region in between the outlet and the bundle top, which will be referred to as
pipe region. The volume averaged coarse-mesh properties of these regions are
summarized in Table 4.3.3.

Region
Dimensions Coarse-mesh properties

Physical (mm) Mesh (−)
αs (−) Dh (mm) T (−)Axial Radial Axial Radial

Inner lower bundle 200 21.553 10 5 0.523 5.469 0.441
Outer lower bundle 200 5.007 10 2 0.374 12.305 0.562
Inner heated bundle 900 21.553 23 5 0.523 5.469 0.441
Outer heated bundle 900 5.007 23 2 0.374 12.305 0.562
Inner upper bundle 450 21.553 12 5 0.523 5.469 0.441
Outer upper bundle 450 5.007 12 2 0.374 12.305 0.562
Pipe 500 26.560 13 7 0 53.120 1

Table 4.3.3: 2-D axial-symmetric wedge model data with regions listed in order, inwards
from outwards, bottom to top. With regard to the porous properties columns, αs refers to
the structure volume fraction, Dh to the hydraulic diameter, T to the transverse (i.e. radial)
tortuosity component (the axial tortuosity is unity due to the fact that a pin bundle can be
obtained by extrusion in the axial direction).

With regard to the thermal modelling, the pins were treated via a 1-D cylindri-
cal model and coupled to the fluid as discussed in section 3.2.4, with a power
density source prescribed according to the experimental axial power distribu-
tion in both the inner and the outer heated bundle regions. The interfacial

89



area density A′′′s of the pin cladding was derived from the volume averaging
process to be related to the pin volume fraction and pin radius ro as:

A′′′s =
2αs
ro

4.3.2.2 Constitutive relations and closure

In place of the i and j subscripts to represent the two fluids, the subscripts l
and v will be here used to denote the liquid and vapour phase respectively.

Fluid-fluid drag With respect to equation 3.2.23, the following drag coef-
ficient fd,lv models were investigated :

• Autruffe et al. [74], a correlation for two-phase sodium flows:

fd,lv = 4.31 ((1− αNg )(1 + 75 (1− αNg )))0.95

• Wallis, a correlation for two-phase sodium flows used in the SABENA
code [11]:

fd,lv = 0.02
√
αNg

(
1 + 150 (1−

√
αNg )

)
Fluid-structure drag As discussed in section 3.2.2, the fluid-structure drag
depends on the fluid-structure superficial drag coefficients, the fluid-structure
contact fractions and the two phase pressure drop multiplier. For all flow
regimes, the liquid was used as the basis fluid for the calculation of the drag
coefficients via the two phase multiplier method, i.e. M = l with reference to
equation 3.2.17. With respect to said equation, the following drag coefficient
fd,is models were investigated:

• Blasius correlation in the form:

fd,ls =
0.316

Re0.25
ls

which was applied to both (i.e. axial and radial) flow directions in the
pipe region of the model.

• Rehme [75] correlation for the friction factor for flows in wire-wrapped
pin bundles with an hexagonal lattice:

fd,ls =

(
64

Rels
F 0.5 +

0.0816

Re0.133
ls

F 0.9335

)
Wp

Wp +Ww

F =

√
Pt
Dp

+

(
7.6

Dp +Dw

Lw

(
Pt
Lw

)2
)2.16
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which was applied to the axial flow direction in all the pin bundle regions.
It should be noted that the KNS-37 pins are spaced by a spacer grid
rather than a wrapping wire. However, within a coarse-mesh context, the
frictional pressure loss effect of said grids was captured by adjusting the
Rehme model wire lead length (Lw, i.e. the axial pitch of the wounding)
in order to obtain the measured steady-state pressure drop.

• Gunter-Shaw correlation in the form:

fd,ls =
0.96

Rels

which was applied to the transverse flow direction in all the pin bundle
regions.

All of the two-phase pressure drop multiplier models that were presented in
the Ispra experimental analysis section were investigated as well.

Fluid-fluid interface heat transfer coefficients The heat transfer coef-
ficients between fluid bulk and fluid-fluid interface Hi,∂ that govern boiling-
related energy and mass transfer as per equations 3.3.35, 3.2.36 were calculated
from a prescribed, constant Nusselt. The Nusselt numbers used both for the
liquid and vapour side of the heat transfer coefficients were set to 10, as per
the recommendations of Schor [76].

Fluid-structure heat transfer coefficients The heat transfer coefficient
between liquid and structure was computed via the superposition model as
reported in equation 3.2.29, thus relying on four sub-models for the convec-
tive heat transfer component, pool boiling heat transfer component, a flow
enhancement factor and a flow suppression factor. In particular:

• for the convective component, a correlation in the form of equation 3.2.27
was used with the Nusselt computed as:

Nu = 7.485 + 0.030 Re0.77
ls Pr0.77

l

which was proposed by Mikityuk after a review of pin bundle to liquid
sodium heat transfer coefficient data [38];

• for the pool boiling component, the correlation by Shah [77] for liquid
metals was used:

Hls, PB = C q0.7
ls pmr

C =

{
13.7 pr < 0.001

6.8 pr ≥ 0.001

m =

{
0.22 pr < 0.001

0.12 pr ≥ 0.001
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with qls being the fluid-structure heat flux and and pr the reduced pres-
sure (i.e. the pressure divided by the critical pressure of the liquid in
exam. Among other metals, this correlations was verified for Sodium in
a wide range of pressures. The numerical inconvenience of pool boiling
correlations is that they generally related the heat transfer coefficient to
the heat flux, which is what the heat transfer coefficients is needed for in
the first place. Within the scope of this code, this dependence is treated
explicitly;

• for the flow enhancement and suppression factor models, the well known
correlations by Chen [41] were employed.

With regard to the structure-vapour heat transfer coefficient, while it can
nonetheless be modelled, it was deemed of secondary importance due to the
fact that vapour and structure are expected to come into contact only for a very
short period of time around dryout. The heat transfer was calculated assuming
a constant Nusselt of unity. As for the fluid-structure drag coefficients, the
final heat transfer effect depends on the fluid-structure contact fractions fA′′′s ,i
between liquid and structure, vapour and structure, now discussed.

Fluid geometry models By fluid geometry models we mean any correla-
tions that set the liquid-vapour interfacial area A′′′∂ , dispersed phase charac-
teristic dimension Dh, d and the structure contact fractions fA′′′s ,l, fA′′′s ,v that
quantify what proportion of the structure (in this case, the pins) is wetted by
the liquid and vapour respectively. With regard to the fluid-fluid interfacial
area, both the correlations by Schor [76] and by No and Kazimi [78] were
investigated.

For the remaining quantities, these were set via a regime map with two
flow regimes, which we will refer to as annular flow regime and mist flow
regime. This regime map was parametrized with respect to vapour volume
fraction (normalized with respect to the structure volume fraction) αNv . Each
of these regimes exists for certain values of the vapour volume fraction. In
this case, the regime map can be entirely described by two parameters, αNv,an
and αNv,ms with αNv,an < αNv,ms, namely the vapour volume fraction below which
the annular regime is assumed to exist and the vapour volume fraction above
which the mist regime is assumed to exist. For vapour volume fractions in
between the two, all the parameters and the other models discussed so far are
quadratically interpolated. Different regime bounds were investigated, and
these will be discussed alongside the results.

For each regime, the fluid-structure contact fractions and characteristic di-
mensions were treated as constants. With regard to the contact fractions, these
were set to fA′′′s ,l = 1.0 and fA′′′s ,v = 0.0 in the annular flow regime, assuming
that the liquid is at all times in contact with the structure. Conversely, for
the mist flow regime we assumed fA′′′s ,l = 0.0 and fA′′′s ,v = 1.0. Furthermore,
the vapour was treated as the dispersed phase in the annular regime, and the
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liquid was treated as the dispersed phase in the mist regime. Practically, this
affects all quantities that rely on tracking which phase is dispersed and which
is continuous in any given cell. Chief among these are continuous phase density
and dispersed phase volume fraction.

4.3.2.3 Boundary conditions and simulation remarks

This transient necessitates the prescription of a pressure field at the inlet and
outlet in order to resolve the pressure-driven flow oscillations and excursion.
At the outlet, a pressure equal to the experimentally measured pressure of
1bar was imposed throughout the simulation. At the inlet, a time-dependent
pressure profile is imposed in order to reproduce the experimentally reported
pump mass flow ramp, as reported in Table 4.3.2.

All other fields have trivial boundary conditions: fixed values for the liquid
temperature at the inlet and null gradient boundary conditions for all other
quantities at both the inlet and outlet. On the wedge faces, a null gradient is
imposed for all quantities in the direction normal to the faces. The power is
turned off at the same time as the one reported experimentally.

4.3.3 Results

4.3.3.1 Single-phase results

The calculated and experimental results concerning the axial and radial tem-
perature distribution at steady state and at boiling onset are reported in
Figure 4.3.3. The overall agreement between the calculated and experimen-
tal values is good, yet the calculated radial temperature profile is somewhat
under-estimated at the bundle-edges at steady-state.

The main issue lies in the fact that, at this stage of modelling, we relied
on the same drag coefficient correlation, the one by Rehme, both for the inner
and outer pin bundles. However, the outer bundle hydraulic diameter had to
be adjusted to obtain the right flow redistribution between inner and outer
bundle, which is paramount for the prediction of the radial temperature dis-
tribution. Ideally, one would require a different model for the drag coefficient
in the outer bundle regions. While a number of models where experimented
with, with the geometrically calculated outer bundle hydraulic diameter, these
efforts were met with little success, so that it was preferred to use a single drag
coefficient model and vary the outer hydraulic diameter until the radial tem-
perature distribution (prioritizing agreement with the boiling-inception one
over the steady-state one) could be reproduced. This is of fundamental impor-
tance for the transient evolution, as the radial temperature gradient governs
the radial temperature vapour expansion rate, and thus the flow excursion
dynamics.
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Figure 4.3.3: Experimental measurements and calculated results for the axial (left) and
radial (right) temperature profiles at steady state (smaller values) and at the onset of boiling
(larger values). The axial temperatures are evaluated along the bundle centerline, wile the
radial temperature profiles are evaluated at an axial elevation of z = 779 mm from the
bottom of the heated section of the pin bundle. A continuous line was used to report the
calculated values for the sake of clarity.

4.3.3.2 Two-phase results

A number of different correlations for different quantities and parameter com-
binations were investigated. The results obtained by the application of four
different sets of correlations and relevant parameters are presented and com-
pared against the experimental ones, while the effects of changing other pa-
rameters are discussed qualitatively.

It should be noted that the overall outcome of modifying any given model
or model parameters is itself dependent on the choice for correlations governing
other quantities, yet a thorough sensitivity and co-variance analysis of all the
models was out of scope for this investigation. For clarity, the four presented
sets of results will be referred to as models I through IV. All of the presented
results relied on the Schor interfacial area correlation, a virtual mass coefficient
of fvm = 0.1, an upper annular regime normalized vapour fraction threshold
αNv,an = 0.94 and a lower mist regime normalized vapour fraction threshold
αNv,ms = 0.99. The differences between the four models are summarized in
Table 4.3.4

Figure 4.3.4 presents the results obtained with what we will refer to as
model I. In particular, the Autruffe correlation for the liquid-vapour interfacial
friction and the Kottowski-Savatteri two-phase multiplier were used.

Figures 4.3.5 and 4.3.7 present the results obtained by model II and III
respectively, which used the same correlations as model I, except model II
relied on the Lockhart-Martinelli two-phase pressure drop multiplier and model
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Model φ2 (−) fd,lv (−)
I Kottowski-Savatteri Autruffe
II Lockhart-Martinelli Autruffe
III Chen-Kalish Autruffe
IV Kottowski-Savatteri Wallis

Table 4.3.4: Summary of the main differences between models I through IV, which differ in
the choice of the two-phase pressure drop multiplier φ2 and the liquid-vapour drag coefficient
fd,lv.

III on the Chen-Kalish one. Figure 4.3.4 finally presents the results obtained
by model IV, which used the Wallis liquid-vapour interfacial friction correlation
alongside the Kottowski-Savatteri two-phase multiplier model.

Figure 4.3.4: Model I, calculated results in time for: normalized inlet mass flow (top left);
total vapour volume (top right); absolute pressure change at the axial location z = 779 mm
(bottom left); maximum and minimum axial vapour extent (defined as αNv ≥ 0.01, bottom
right). The time is measured with respect to the pump trip time at t = 0 s.

All models predict the same time for the onset of boiling, which is a conse-
quence of the inlet mass flow ramp down and pin power which were the same
in all cases. In particular, the boiling onset was predicted at t = 6.14 s after
pump trip, comparable to the experimental t = 6.11 s. In the time window
between boiling onset and the start of flow excursion, all models yield equiv-
alent results in terms of total vapour volume evolution (top right plot of each
figure), and axial vapour expansion (bottom right plot of each figure), and
they compare well against the experimental data.

With regard to the inlet mass flow rate (top left plot of each figure) and
pressure (always evaluated at z = 779 mm, bottom left plot of each figure), the
average trend of all models except for model III are comparable between each
other and comparable to experimental results. The main difference results in
the magnitude of the high-frequency (in the 3−6 Hz range) oscillations, which
was found to be higher for model II, that employs the Wallis correlation. This
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is primarily due to the fact that the Wallis model predicts a lower value of the
drag coefficient across all vapour void fraction ranges, so that the decreased
momentum coupling between the fluid decreases oscillation dampening.

Figure 4.3.5: Model II, calculated results in time for: normalized inlet mass flow (top left);
total vapour volume (top right); absolute pressure change at the axial location z = 779 mm
(bottom left); maximum and minimum axial vapour extent (defined as αNv ≥ 0.01, bottom
right). The time is measured with respect to the pump trip time at t = 0 s.

Another important aspect that was later on found to reduce the inlet mass
flow oscillations, regardless of the models, was to extend the overall simulation
domain, e.g. lengthening the assembly. This effectively allows to model the
inertia of the rest of liquid sodium in the loop, which is otherwise neglected
if limiting the analysis to the assembly domain and imposing von Neumann
boundary conditions for the velocity at the inlet. Regardless, the reason why
model III predicts an overall faster inlet mass flow reduction is due to the fact
that, as it was observed for the steady-state Ispra experiments, it predicts a
larger two phase drag multiplier factor.

With regard to the vapour axial and radial expansion in this initial tran-
sient phase (bottom right plot of each figure), all models agree well both among
each other and with experimental results, especially with regard to the down-
ward vapour expansion. In particular, boiling starts in the innermost cells
at the axial location between z = 860 mm and z = 900 s, that is, at the
top of the heated bundle. The large axial temperature gradient in the upper
unheated bundle region combined with the much smaller axial temperature
gradient within the top of the heated bundle itself, below the unheated part,
results in an overall downward vapour axial expansion in the initial phase of
the transient. As the upper bundle is heated by the condensing vapour, the
upper front starts rising as well. Radially, while the results are not shown,
the vapour reached the outer bundle in the 8.25− 8.35 s range for all models
except model III, which anticipates it at 7.30 s. The start of the flow ex-

96



cursion follows shortly after for all models and can be recognized clearly from
the sharp increase in pressure and decrease in inlet mass flow. All models
except for model III predicted a somewhat delayed start of the flow excursion
at 8.90 s, compared to the experimentally measured 8.30 s. As an example,
the radial vapour distribution predicted by model I at three different instances
in time is reported in Figure 4.3.6.

Figure 4.3.6: Distribution of the normalized vapour phase fraction αNv at three different
moments of the transient, when (from left to right): at t = 8.30s, the vapour reaches outer
bundle region; at t = 8.90s, the flow excursion starts; at t = 9.45, the power is turned off.
Please recall that the mesh domain consists of a 2-D axial-symmetric wedge, with the wedge
axis being the leftmost edge of the domain in each of the three images. The heated bundle
section upper and lower boundaries are highlighted with red lines. The mesh and domain
are axially scaled by a factor 0.075 for compactness.

From the perspective of inlet mass flow rate evolution however, the some-
what faster rate at which the flow excursion takes place makes it so that the
overall inlet flow profile is well resolved by all models except model III. As it
was highlighted earlier, the two-phase drag multiplier predicted by the Chen-
Kalish model is higher than that predicted by other models, so that the flow
excursion is much more severe, thus resulting in a larger vapour volume pro-
duction and no flow recovery within the time bounds of the transient. For this
reason, model III will not be referred to any further in the discussion.

Concerning the pressure profiles, while all of the three models under exam
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under-predict the pressure increase, model I predicts the smallest increase
among them. When comparing models I and II, this result can appear to
be unexpected since, as it was observed in the Ispra experiments re-analysis,
the Kottowski-Savatteri and the Lockhart-Martinelli correlations for the two-
phase drag multiplier yielded comparable results in all investigated scenar-
ios. The main difference lies in the fact that during the KNS transient, much
larger vapour flow qualities were attained in some mesh cells, resulting is much
smaller values of the liquid Lockhart-Martinelli parameter Xl, on which both
the Kottowski-Savatteri and the Lockhart-Martinelli multipliers depend. In
particular, at very low values of Xl, the Lockhart-Martinelli two-phase multi-
plier is larger than the Kottowski-Savatteri one, which explains the more pro-
nounced pressure increase observed in model II compared to model I. Model
IV also uses the Kottowski-Savatteri correlation, yet the use of the Wallis in-
terfacial drag model results in a higher pressure increased compared to model
I itself. The reason for this is not fully clear, yet a reasonable assumption is
that this is due to the increase in the vapour flow quality due to the lower
drag, on which the two-phase drag models depend.

Figure 4.3.7: Model III, calculated results in time for: normalized inlet mass flow (top left);
total vapour volume (top right); absolute pressure change at the axial location z = 779 mm
(bottom left); maximum and minimum axial vapour extent (defined as αNv ≥ 0.01, bottom
right). The time is measured with respect to the pump trip time at t = 0 s.

Shortly after flow excursion, at 9.45 s, the power is turned off in all models.
While experimentally this was performed in response to a dryout detection at
9.25 s following a rapid rise in cladding temperatures (of 90 K/s as measured
at z = 870 mm), no such reliable dryout criterion could be identified by the
simulations. In fact, while all models predicted a surface pin temperature rise
between the onset of boiling and the onset of flow excursion, they predicted a
relatively slow rise of pin surface temperature of 50 K/s. For this reason, we
preferred to impose a power-off time to be compatible with the experimental
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ones.
With regard to the total vapour volume evolution (top right plot of each

figure), regardless of the models, the same total vapour production is observed
to the point where vapour reaches the outer bundle region. After that, be-
haviour varies significantly between the models, with model IV predicting a
vapour volume evolution that is the closest to the experimentally measured
one (which was measured indirectly via a time-integrated difference between
inlet and outlet liquid mass flows). In this sense, model I and II predict that
the upper axial vapour front reaches the outlet of the bundle, while model IV
predicts an upper axial vapour front evolution that resembles experimental
data points more closely.

Figure 4.3.8: Model IV, calculated results in time for: normalized inlet mass flow (top left);
total vapour volume (top right); absolute pressure change at the axial location z = 779 mm
(bottom left); maximum and minimum axial vapour extent (defined as αNv ≥ 0.01, bottom
right). The time is measured with respect to the pump trip time at t = 0 s.

With regard to the inlet mass flow re-establishment, all the three models agree
well with experimental results. Concerning the end of boiling, it varied between
12 s and 13 s for all models, compared to the experimentally determined
12.30 s. The overall rates at which the vapour condenses compare well between
all models and the experiment, in spite of starting from different maxima,
which explains the different end-of-boiling times.

With regard to other models and parameters, a qualitative note of interest
is made regarding virtual mass effects. As expected, the virtual mass coefficient
was found to significantly reduce maximum liquid and vapour flow velocities
in the boiling region, without significantly affecting overall results (as most
parameters of relevance, e.g. the vapour flow quality, are defined in relative
and not absolute terms). However, the reduction in flow velocities had the
overall effect of reducing inlet mass flow oscillations and, most importantly,
calculation times. In particular, simulations performed without virtual mass
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effects were found to take up to 4 times as long as calculations with a virtual
mass coefficient as low as 0.1. While this is also due to the aforementioned
fluid velocity reduction, better convergence of the numerical solution of the
pressure-velocity system was also observed. These findings appear to be in
line with extensive numerical analyses performed by Lahey on virtual mass
effects in accelerating two-phase flows [37].

4.4 Conclusions
This chapter focused on a preliminary validation effort against steady-state
and transient sodium boiling experiments, as well as the one-phase heat-up
dynamics that lead to boiling.

The steady-state experiments, performed at JRC, Ispra (Italy), consisted in
sodium boiling in heated tube geometries at constant inlet flow velocities and
inlet power levels until a quasi-steady state is reached. This proved an excellent
ground for the validation of some of the models of code, as the sensitivity of
quasi-steady-state boiling scenarios is small with respect to a variety of models
that are otherwise relevant in transient scenarios. The results yielded by this
investigation chiefly consisted of total frictional pressure drop magnitudes for
varying magnitudes of inlet mass flow rate, and the experimental results could
be reproduced satisfactorily. Practically, the use of the Kottowski-Savatteri
[67] correlation for the two-phase pressure drop multiplier yielded the closest
results to the experimental ones, though the overall spread resulting from the
use of the other investigated correlations is within experimental uncertainties,
with the exception of the Chen-Kalish two-phase pressure drop multiplier,
which was devised from Potassium boiling data. With regards to the thermo-
physical properties of sodium, the adoption of a pressure-dependent saturation
temperature model (based on the data compiled by Fink and Leibowitz [73])
proved of great importance to capturing the boiling hydraulic characteristic of
the system under investigation.

Transient boiling experiments, more specifically consisting of test L22 per-
formed at the KNS-37 facility at Kernforschungszentrum Karlsruhe (Germany)
were modelled and investigated to assess the transient capabilities of the solver.
Different correlations for a variety of quantities where investigated. While
an appreciable sensitivity of the overall calculation results to the selection
of models for the different involved parameters was highlighted, as expected
from transient two-phase simulations, the obtained results were deemed over-
all satisfactory when compared to the experimental ones. These results chiefly
consisted of the prediction of inlet mass flow rates, total vapour volume, axial
distribution of the vapour and total pressure at specific assembly locations.
Unlike the steady-state results, due the significantly more “integral” nature
of these simulations (i.e. its degree of sensitivity to virtually all parameters
which require correlations), the validation cannot be said to pertain to a spe-
cific model for a specific parameter, rather, it pertains to the overall choice of a
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number of models for a variety of parameters. While a full sensitivity analysis
was out-of-scope for this work, some of the parameters to which simulation
results were more sensitive to consist of the liquid-vapour drag coefficient and
the two-phase pressure drop multiplier. For these parameters, the correla-
tions that yielded the closest agreement with experimental data consist of the
Kottowski-Savatteri correlation for the two-phase pressure drop multiplier and
the Wallis [11] correlation for the liquid-vapour drag coefficient.
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Chapter 5

Application to flow blockage
investigation in SFRs

5.1 Introduction
The present chapter discusses an instance of the application of the one-phase
thermal-hydraulic methodology to the analysis of design features in Sodium-
cooled Fast Reactors (SFRs) and their impact on assembly flow blockage sce-
narios. These features consist of the inter-assembly gap flow, which is a con-
sequence of wrapped fuel elements, as well as a novel design feature proposed
for SFRs and consisting of wrapper windows.

Fuel assemblies in SFRs are typically wrapped by an outer can, referred to
also as wrapper. This design feature allows to control the power-to-flow ratio
in individual assemblies throughout the reactor core. Inter-assembly gap flow
is thus a standard feature in SFRs and it can constitute a non-negligible heat
sink given the excellent thermal properties of liquid sodium (> 60 W/m/K
of thermal conductivity) and the favourable heat transfer properties of the
assembly steel wrapper. While the role of the inter-assembly gap used to be
neglected or strongly approximated in the past, the need for a more detailed
representation of the inter-assembly flow has recently been recognized in some
investigations [79][80][81].

Assembly wrapper windows [82] are instead an innovative design feature
that consists of openings in the wrappers below the end of the active fuel re-
gion. At first, this feature might seem to defy the purpose of the wrappers
themselves. However, while the resulting flow coupling between neighbouring
assemblies might be undesirable in steady-state operation, these windows are
intended to limit the negative consequences that might arise from sodium boil-
ing in transient scenarios. Sodium boiling can in fact lead to a significant flow
reduction, which in turn can exacerbate the consequences of an Unprotected
Loss Of Flow (ULOF) scenario [83][67], as it was illustrated in the previous
chapter. The flow excursion is due to the considerable increase of the friction
factor in two-phase flow conditions, which facilitates the downward propaga-
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tion of the sodium void, potentially to core regions characterized by a local
high positive void reactivity coefficient. Assembly windows can then be used
to help restricting the presence of vapour to the upper core region in such
scenarios.

A detailed simulation of the inter-assembly flow and of the assembly win-
dows can provide important information in various reactor conditions. In this
work, the assembly flow blockage was chosen as a test case. It represents both
a severe accident initiator in SFRs, as seen in the partial fuel meltdown in
the Unit 1 of the E. Fermi Atomic Power Plant (Michigan, U.S.A.) [84] and a
suitable case to highlight the impact of 3-D effects due to the large radial ther-
mal gradients and sodium flow through the windows. The investigation was
however limited to one-phase scenarios as the one-phase solution algorithm
and modelling capabilities were developed far before the two-phase ones, and
the overall time frame of the doctoral work did not allow for a re-analysis with
the two-phase algorithm. Regardless, this application makes use of important
developments required for the coarse-mesh modelling of heat transfer through
the wrappers and of the sodium flow through the assembly windows. It also
discusses the important aspect of mesh-convergence related to the coarse-mesh
methodology.

Sub-section 5.2 presents the developed wrapper heat transfer model and
the wrapper window pressure drop model. Sub-section 5.3 presents the mod-
elling of the assembly bundle and the blockage investigation procedure, which
was performed on a representative assembly of the latest European Sodium-
cooled Fast Reactor (ESFR) design [85]. Sub-section 5.4 presents the results
of the mesh convergence study. Sub-section 5.5 presents the results of the ac-
tual parametric analysis of the thermal-hydraulic impact of the features under
investigation in flow-blockage conditions. Relevant conclusions are drawn in
sub-section 5.6.

5.2 Development of dedicated internal bound-
ary conditions

5.2.1 Wrapper heat transfer modelling

In SFRs, the fuel assemblies are encased in so-called wrappers and are sepa-
rated by a sodium gap a few millimeters in thickness. These can be modelled in
OpenFOAM via 2-D internal boundaries (called baffles) that physically sepa-
rate the flow in the assemblies from that in the gap, and that take into account
the thermal resistance of the wrapper. To understand how this heat transfer
through the wrappers can be modelled, let us consider a baffle with a physical
thickness δb, a thermal conductivity kb and let us denote the two sides of the
baffle with + and − superscripts. The temperatures of two opposing baffle
parcels will be denoted with T+

b and T−b , while the cell center temperatures of
the cells adjacent to these baffle parcels will be denoted with T+

c and T−c . A
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representation of this is provided in Figure 5.2.1.

Figure 5.2.1: Schematic of two computational cells at the opposing sides of a thermally con-
ductive baffle. Cell centers are marked with full circles while face centers at cell boundaries
are marked with half circles. The heat transfer coefficients between relevant positions in the
geometry are reported. From a geometric modelling perspective, the baffle has no thickness
but the heat transfer is treated as if it had a thickness δb.

It should be stressed that the baffle thickness is not explicitly resolved in the
computational geometry. For this reason, the two sides of the baffle lie on
the same plane. By neglecting the thermal inertia of the baffle (a reasonable
assumption if the absolute heat capacity of the wrapper is small compared
to that of the sodium in the domain), the baffle surface temperatures can be
computed by enforcing heat flux conservation, namely that the heat per unit
area that flows into one side of the baffle is instantaneously the same as the
heat per unit area flowing out of the baffle. Thus:

1
δb
kb

+ 1
H+

(T+
c − T−b ) = H−(T−b − T

−
c ) (5.2.1)

1
δb
kb

+ 1
H−

(T−c − T+
b ) = H+(T+

b − T
+
c ) (5.2.2)

The equations represent an instantaneous heat flux balance, given that: 1)
the heat transfer between a cell and the adjacent baffle parcel on the + side is
characterised by the heat transfer coefficient H+; 2) the heat transfer between
the two opposing baffle parcels on the + and − side respectively by the heat
transfer coefficient δb/kb; 3) the heat transfer between the baffle parcel and
the adjacent cell on the − side is characterised by heat transfer coefficient
H−. These heat transfer coefficients are computed according to 3.2.27 with
user-specified correlations for the Nusselt number as seen in equation 3.2.28.
Due to the code architecture, the boundary conditions cannot be managed
via the flow regime map approach internal to the code as discussed in sub-
section 3.2.1 in chapter 3. This boundary condition thus further implements
an internal flow regime map of possibly two flow regimes, namely laminar
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and turbulent, whose correlation coefficients and regime bounds can be user-
specified, with linear interpolation of the Nusselt in the transition regime.
Within the overall algorithm framework presented in Figure 3.3.1 in chapter
3, the baffle temperatures are updated according to 5.2.1, 5.2.2 right after the
solution of the phase enthalpy equations within each outer iteration.

The approach was analytically verified in 1-D scenarios.

5.2.2 Pressure baffle

Consider two adjacent regions of the computational domain characterized by
some macroscopic averaged parameters. Given a fluid flow between the two
regions, an additional irreversible pressure jump is physically expected at the
interface in case of a change of the sub scale structure geometry or due to
a change of flow characteristics (e.g. direction). For the practical case under
investigation, an ESFR assembly, this scenario is identified at the wrapper
windows. In particular, the pressure jump is modelled in a similar manner as
for orifices and pipe bends, that is:

∆p = ξk
1

2
ρ|u|2 (5.2.3)

with ξk a head loss coefficient. As a limiting case (i.e. maximum pressure
drop), the head loss coefficient for the present application was assumed to be
equal to that associated with a double right-angled mitered pipe bend. This
would be the pressure loss if the fluid e.g. entering the assembly from the gap
were forced to bend at a right angle with respect to the main flow direction.
Additional irreversible pressure losses are expected within the assembly itself
at the interface between regions characterized by sharp changes in the porosity
(e.g. the pin bundle and the intra-assembly plenum). However, these losses
were found to be negligible in magnitude. An internal boundary condition for
the non-hydrostatic component of the pressure was thus developed and applied
to the windows. It consists of an internal boundary conditions that imposes
a pressure jump on the boundary on which it is applied (i.e. the wrapper
windows), which is calculated according to 5.2.3.

5.3 Computational modelling

5.3.1 Geometric modelling

Three distinct geometric models are investigated, based on the data of the
ESFR-SMART core assemblies, with the main design parameters reported
in Table 5.3.1. These models consist of: 1) a single assembly with thermally
adiabatic wrappers; 2) a bundle of seven assemblies with thermally conductive,
window-less wrappers, separated by an inter-assembly gap; 3) a bundle of
seven assemblies with thermally conductive wrappers with windows, separated
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by an inter-assembly gap. These models will be referred to as “adiabatic”,
“windowless” and “windowed” respectively in the remainder of this chapter.

The adiabatic and windowless models span over the axial length of the fuel
region within the assemblies. The windowed model extends up to the assembly
outlet. This modelling extension is necessary as sodium flow through windows
is governed by the pressure gradients between the assemblies and the gap. This
in turn depends on the entire axial structure of the assembly, as a common
pressure can only be reasonably assumed to be shared at the outlet. An
overview of the computational domains of the models is presented in Figures
5.3.1 and 5.3.2.

The models are coarse-mesh based and the assembly properties are ob-
tained via volume averaging as discussed earlier. In particular, the properties
of the assemblies were obtained by averaging the pins over the inner assembly
volume (i.e. exclusive of the wrapper), while the gap properties were obtained
by averaging the wrapper thickness over the volume of the wrappers and the
inter-assembly gap volume. Relevant geometric data, coarse-mesh modelling
data, friction factor and Nusselt number correlations with the related param-
eters, when applicable, are reported in Table 5.3.2. In particular, the data
for each of the axial regions of the windowed model is reported, while the
adiabatic and windowless models share the data of the fuel axial region of the
windowed model.

Quantity Value
Reactor thermal power (MW ) 3600
Number of inner fuel assemblies 216
Number of outer fuel assemblies 288
Number of pins per fuel assembly 271
Core outlet temperature (°C) 395
Core inlet temperature (°C) 545
Active core mass flow rate (kg/s) 19000
Fuel MOX
Pu enrichment (% wt.) 17.99
Cladding and wrapper material EM10 steel
Active fuel height, inner core (mm) 750.00
Active fuel height, outer core (mm) 950.00
Assembly lattice pitch (mm) 209.85
Wrapper outer flat-to-flat(mm) 205.35
Wrapper thickness (mm) 4.50
Inter-assembly gap width (mm) 4.50
Fuel pellet inner diameter (mm) 1.56
Fuel pellet outer diameter (mm) 4.68
Cladding inner diameter (mm) 4.84
Cladding outer diameter (mm) 5.34

Table 5.3.1: Reference design and performance data of the ESFR core

With reference to Table 5.3.2, a few remarks should be made. The gap height
was not reported as it corresponds to the total model height, which varies
between the three models. Two values of the hydraulic diameter for the fuel
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Figure 5.3.1: side view and a quarter of top view for: a) the single assembly model (i.e adia-
batic); b) the seven assembly bundle with thermally conductive wrappers without windows
(i.e windowless); c) the seven assembly bundle with thermally conductive wrappers with
windows (i.e windowed); please notice that the windows cannot be seen from the side view
as they are shrouded by the half-gap around the assemblies. The location of the windows
behind the half-gap mesh was highlighted in yellow. The windowed model consists of five
axial regions: I) fuel; II) plugs; III) intra-assembly plenum; IV) upper shield; V) assembly
head. d) Detail of the inter-assembly gap meshing.

region are reported. The bulk value is employed for the computation of the
friction factors and pin-sodium heat transfer coefficients, while the edge value
is used for sodium-wrapper heat transfer coefficient calculations. With regard
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Figure 5.3.2: detail of the assembly wrappers: a) without windows; b) with windows. Please
notice that the wrappers in the windowed model extend up to the assembly outlet. However,
for a clearer view of the windows, the wrappers have been cut at the end of the fuel region.

to friction factor correlations, a Blasius correlation is used to model friction
in the intra-assembly plena, heads and in the inter-assembly gap. For the
pin-occupied regions, a Rehme correlation [75] with adequate geometric pa-
rameters was employed for the calculation of the momentum sink parallel to
the bundle direction, while a Gunter-Shaw correlation [86] was employed for
the momentum sink due to cross-flow in the direction perpendicular to the
pins.

Two sets of parameters for the Nusselt calculations are employed through-
out the model, one for the laminar regime (i.e. for Re < Relam) and one for the
turbulent regime (i.e. for Re > Returb). The coefficients were obtained from
the proposed correlation by Mikityuk [38] with respect to the present fuel bun-
dle geometry for the turbulent regime. For the laminar regime, the Nusselt
number is constant. For the transition regime, the Nusselt number is obtained
via linear interpolation between the two Nusselt numbers computed at the
transition regime boundaries. While the use the same correlation (devised for
pin bundles) for the Nusselt number for both the pin-fluid heat transfer and
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Quantity Value in region
Fuel Plugs Plenum Shield Head Gap

Height (mm) 864.29 68.00 600.00 576.00 230.00 -
Width (mm) 196.35 196.35 196.35 196.35 196.35 13.50
αs (−) 0.268 0.268 1.000 0.280 1.000 0.362
T (−) 0.673 0.673 1.000 1.000 1.000 1.000

Dh (mm)
3.35 (bulk) 3.35 113.36 3.37 113.36 9.104.36 (edge)

A′′′s (m2/m3) 272.08 0 0 0 0 0

Friction factor
correlation

Rehme, Gunter-Shaw Rehme, Gunter-Shaw

Blasius

Rehme, Gunter-Shaw

Blasius Blasius

N (−) 271 N (−) 271 N (−) 19
Dp (mm) 10.67 Dp (mm) 10.67 Dp (mm) 40.12
Pp (mm) 11.67 Pp (mm) 11.67 Pp (mm) 43.15
Dw (mm) 1.00 Dw (mm) 1.00 Dw (mm) 1.00
Hw (mm) 225.00 Hw (mm) 225.00 Hw (mm) 225.00
Value

Nusselt
correlation

Laminar regime
ANu 3.521
BNu 0
CNu 0
Turbulent regime
ANu 3.521
BNu 0.014
CNu 0.770

Relam (−) 1000
Returb (−) 2300
ξk (−) 1.17

Table 5.3.2: Geometric and porous medium modelling data for the axial regions of the
windowed model. The adiabatic and windowless models share the same data of the fuel
region of the windowed model.

the wrapper wall-fluid heat transfer is debatable, it should be noted that this
has little impact on the results of the present work. As a matter of fact, the
overall heat transfer coefficient between the intra-assembly sodium and the
sodium in the assembly gap will be limited by the thermal resistance of the
wrapper wall (i.e. 4.5mm of steel, κw ≈ 20W/m/K). Even the worst case
estimates for the fluid-wrapper Nusselt (e.g. for a Nu ' 3) result in a heat
transfer coefficient that is one order of magnitude larger than the heat trans-
fer coefficient of the wrapper itself. Furthermore, fine-tuning the turbulence
model to fit currently unavailable experimental data was out of scope for the
current work.

The tortuosity that is reported in Table 5.3.2 is the scalar value of the tor-
tuosity in the two transverse directions, as the tortuosity in the axial direction
is unity (due to pin bundles fundamentally being axially-extruded geometries).

With regard to wrapper windows, these are opening with a hydraulic di-
ameter of 60mm whose center lies at 168mm below the top of the fuel. It is
recalled that these opening are located close to the top of the fuel so to pre-
vent, in boiling scenarios, downward axial vapour propagation towards core
regions characterized by a locally positive void reactivity coefficient. While
the windows are circular in shape, for modelling simplicity these were repre-
sented as square openings characterized by the same hydraulic diameter as the
actual window geometry. A head loss coefficient of ξk = 1.17 was assumed for
the pressure drop across the windows. In particular, this value was obtained
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by averaging the Reynolds-dependent correlation for head loss coefficients of
right angle miter bends [87] over the range of Reynolds numbers of the investi-
gated cases. The magnitude of the pressure drop is then computed according
to 5.2.3, with appropriate directionality taken into account.

For the simulation of the different investigated scenarios, fixed value bound-
ary conditions are imposed at the inlets of the central assembly, neighbouring
assemblies and gap for the velocity and a common pressure is set at all the
outlets. An axially cosine shaped, radially uniform fuel power profile is set
across the fuel region in each assembly to model internal power production.
The fuel pins are thermally modelled in each mesh cell of the fuel region via
the 1-D nuclear fuel pin model described in sub-section 3.2.4, and in greater
detail in appendix A.

5.3.2 Investigation procedure

Each simulated case is defined by four parameters, namely: 1) reactor power
expressed as a fraction fP of the power at steady state operation; 2) total
sodium velocity in the neighbouring assemblies expressed as a fraction fN of
the reference sodium velocity at steady state operation; 3) sodium velocity in
the central assembly expressed as a fraction fC of the sodium velocity in the
surrounding assemblies that do not undergo blockage; 4) sodium velocity in
the inter-assembly gap expressed as a fraction fG of the sodium velocity in the
surrounding unblocked assemblies. A parametric approach with respect to this
quantity is justified by the lack of experimental data regarding inter-assembly
gap velocity magnitudes.

For every combination of these values, for each of the three models (i.e. adi-
abatic, windowless, windowed), simulations are performed in the following way.
First, a simulation with no blockage is performed until (and if) a steady-state
is reached, given the other parameters for reactor power, unblocked assembly
sodium velocity and gap sodium velocity fractions (the gap is not modelled in
the adiabatic case for obvious reasons). Afterwards, an instantaneous block-
age is modelled in the form of a sudden sodium inlet velocity excursion in the
central assembly, and the simulation is performed until either a new steady
state or boiling temperatures are reached. If a new steady state is reached,
the outlet bulk temperatures of the gap and central assembly are estimated. If
boiling temperature is reached, only the time elapsed until the onset of boiling
is registered and simulations are terminated, as the investigation was limited
to one-phase scenarios.

The investigated parameters consist of: 1) 100 %, 5 % reactor power; 2)
100 %, 5 % sodium velocity in surrounding assemblies; 3) sodium velocity in
central assembly from 0 % (i.e total blockage) to 60 % in steps of 10 % of the
neighbouring assemblies sodium velocity; 4) sodium velocity in gap from 0 %
to 100 % in steps of 20 % of the neighbouring assemblies sodium velocity. In
particular, the investigated power levels were selected so that results charac-
teristic of varying degrees of blockages at both full power (fP = 100 %) and at
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power levels compatible with core status right after shutdown (fP = 5 %, e.g. a
protected transient following blockage detection) could be obtained. Nominal
assembly parameters correspond to a power of 7.143 MW and a flow rate of
44.7 l/s. This corresponds to a sodium velocity of 5.00 m/s through the active
core pin region.

5.4 Mesh convergence study

5.4.1 Theoretical remarks

A mesh convergence analysis was motivated by the specific challenges that
coarse meshes pose. When selecting a mesh in a coarse-mesh context, it
should be recalled that: 1) an overly fine mesh would defy the purpose of
a coarse-mesh approach; 2) an overly coarse mesh might lead to unacceptable
discretization errors in the obtained solution. To avoid large discretization
errors one should be able to make an estimate on the error bounds obtained
on the quantities of interest. For this estimate to be possible, however, the
results need to be in what is referred to as asymptotic convergence range [22].
For a result of interest to be in the asymptotic convergence range, it needs
to monotonically approach a definite value as the mesh is further refined.
This behaviour enables a meaningful extrapolation of the results at an ide-
ally infinitesimal mesh size, such as the approach of generalized Richardson
extrapolation [88], which in turn allows for error bounds to be estimated.

Let us consider a certain output quantity of interest φ. If φe is the extrap-
olated value at an ideally null mesh spacing and φh is the value obtained at a
certain mesh spacing h, the error Eh can be estimated as:

Eh = φh − φe = C hq +O(q′ > q) (5.4.1)

wherein q is a certain order of convergence of the error. In particular, the
obtained result φh is in the asymptotic convergence range if the error Eh can
be expressed as a polynomial of the grid spacing whose lowest order (i.e. of
order q) coefficient C does not depend on h. The big O notation is used
to represent higher order terms that become negligible as the mesh spacing
approaches infinitesimal values.

If the results are in the asymptotic convergence range, given three out-
put values φi, φi+1, φi+2 obtained respectively on progressively refined meshes
by a factor r = hi/hi+1 = hi+1/hi+2 > 1, the convergence order q and the
extrapolated value φ can be obtained as (via Richardson extrapolation):

q =
1

ln(r)
ln

(
φi − φi+1

φi+1 − φi+2

)
(5.4.2)

φe ' φi + (φi+1 − φi)
rq

rq − 1
(5.4.3)
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Various estimators for the error on the coarse mesh solution φi can be defined:

e′i =

∣∣∣∣φi − φi+1

φi

∣∣∣∣ (5.4.4)

ei =

∣∣∣∣φi − φeφi

∣∣∣∣ = e′i
rq

rq − 1
(5.4.5)

Neither of these should be interpreted as error bounds on the coarse solution
φi, rather as error “bands”, i.e. a tolerance on the accuracy of the solutions,
that may as well be exceeded.

In the experience of Roache [22], the most commonly reported error esti-
mator in mesh convergence studies in the one represented by equation 5.4.4.
However, this estimator contains no information of the actual order of conver-
gence of the solution on its own, which is necessary to assess if the solution is
in the asymptotic convergence range. This information is instead present in
the relative error estimator ei. To address this, Roache proposes the use of a
so-called Grid Convergence Index (GCI) defined so that:

e′i
rq

rq − 1
= GCIi

rq00

rq00 − 1
(5.4.6)

The GCI thus represents what would be the equivalent error estimator in
the form of equation 5.4.4 if the results were obtained by a q0-order accurate
method for a mesh refinement ratio r0. Typical values suggested by Roache for
the comparison are r0 = 2 and q0 = 2, thus consisting in a comparison against
the uncertainties associated with the convergence of a second order accurate
method with mesh halving. From equations 5.4.4, 5.4.5 and 5.4.6 it follows
that:

GCIi =
3

4
ei =

3

4

∣∣∣∣φi − φi+1

φi

∣∣∣∣ rq

rq − 1
(5.4.7)

It should be noted that this formulation differs by that of Roache by a factor
1/rq00 as this is done from the perspective of error estimation for the coarser
solution φi and not for the finer solution φi+1, yet the approach is the same.

It can be shown that the output of interest obtained by a coarse mesh φi
is in the asymptotic convergence range if:

GCIi ' GCIi+1 r
q (5.4.8)

This can be computed as long as the output parameters φi+1, φi+2 obtained
at subsequently refined meshes by a factor r are available. Thus, to assess
whether results are in the asymptotic convergence range (ACR), the following
ratio is evaluated and checked whether it is within unity:

ACR =
GCIi

GCIi+1 rq
(5.4.9)

To summarize, the mesh convergence effort is aimed at establishing whether or
not results are in the asymptotic convergence range via the estimation of the

112



ACR and the subsequent estimation of representative expected error bands on
the obtained results.

In the context of this work, this process is furthermore meant to establish
which mesh topology is best suited for the spatial discretization of the domain
given the nature of the investigated cases.

5.4.2 Results

Two cases were investigated, namely: 1) fP = 100%, fN = 100%, fC = 50%,
fG = 100%; 2) fP = 5%, fN = 5%, fC = 50%, fG = 100%. These two cases
will be referred to as “full power” and “low power”, respectively.

The quantity for which convergence properties were assessed was the outlet
bulk temperature of the central assembly and the gap. In particular, with
regard to the results concerning the GCIs, subscripts 1 and 2 will be used to
denote the GCIs related to the coarse and fine meshes respectively.

5.4.2.1 Adiabatic and windowless model

For both the full and low-power cases, two different mesh topologies were
investigated, reported in Figure 5.4.1. Referring to said figure, these meshes
will be referred to as triangular mesh and web mesh.

The reason for investigating these topologies is that while the triangular
mesh is among the most popular choices for the investigation of fast reactor
assemblies, it might not be the most suitable option due to the added numerical
diffusivity in this scenario. This comes from the fact that many cell faces will
not be orthogonal to thermal gradients. The web mesh has been investigated
to try to address this issue. The radial divisions within an assembly are such
that each cell has the same overall volume.

For each mesh topology (Figure 5.4.1), different meshes obtained by varying
the number of nodes in the characteristic directions were investigated: 1) nA
number of nodes in the axial direction; 2) nR number of nodes in the assembly
radial direction; 3) nS number of nodes per assembly side (only for the web
mesh); 4) nG number of nodes in the half-gap radial direction. Any mesh for
the windowless model can be described in terms of these four parameters.

The mesh that was found to be suitable for the scope of the subsequent
parametric flow blockage investigation is a web mesh characterized by nA = 20,
nR = 4, nS = 1, nG = 4. Convergence properties were investigated separately
for radial and axial mesh refinements.

It is recalled that in order to assess the convergence properties, the results
need to be obtained on two further refined meshes. For the case of radial
refinement, this consisted in subsequently doubling both the number or radial
nodes in the assembly nR and half-gap nG, while maintaining the same number
of nodes in other directions. For the case of axial refinement, this consisted in
subsequently doubling nA while maintaining the same number of nodes in the
other directions.
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Figure 5.4.1: examples of half cross-sections of the investigated mesh topologies: (left)
triangular mesh; (right) web mesh. The key quantities that characterise each mesh are
reported. These consists in the number of computational nodes in each reported direction.
Each mesh is further characterized by the number of nodes in the axial direction nA, not
reported in the figure.

The mesh convergence properties of the outlet bulk temperatures for the cen-
tral assembly TC and gap TG for the low power case is provided in Table 5.4.1.

Mesh Value (K) Refinement q (−) GCI1 (%) GCI2 (%) ACR (%) Te(K) ∆T (K)

TC

Tri 894.17 Radial 1.27 0.524 0.218 100.170 900.44 6.30
Axial -

Web 894.87 Radial 1.32 0.429 0.172 100.137 900.01 5.15
Axial -

TG

Tri 771.64 Radial 0.70 1.000 0.614 99.685 761.44 10.12
Axial 0.67 0.054 0.034 100.017 772.20 0.56

Web 771.10 Radial 0.71 0.817 0.500 99.741 762.74 8.31
Axial 0.56 0.051 0.035 100.015 771.63 0.5

Table 5.4.1: mesh convergence results for the outlet bulk temperature of the central assembly
TC and gap TG for the low power. The results are presented for radial and axial refinements
starting from the results obtained by a web mesh and a triangular mesh with the same
parameters: nR = 4, nS = 1, nG = 4, nA = 20. The quantity q represents the order
of convergence as defined in equation 5.4.2. The convergence results related to the axial
refinement of the mesh on TC are not reported because the obtained values for TC were
found to be already at geometric convergence (i.e. < 0.1 K difference between the coarse
and the extrapolated values) for both the web and triangular mesh. The columns Te and
∆T report the extrapolated temperature values and the error bands respectively.

The results are found to be in the asymptotic convergence range (ACR ' 1)
for both the triangular and web meshes and all the refinement types.

Convergence properties related to central assembly temperature TC for
axial mesh refinement are not reported as these were found to be already at
geometric convergence (i.e. < 0.1 K difference between the coarse and the
extrapolated values).
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For a given set of radial mesh parameters, further axial refinements do
not have a significant impact on the solution. This is expected, as the ther-
mal gradients in the axial direction are much smaller than those in the radial
direction. Furthermore, the web mesh is characterized by better mesh conver-
gence properties in terms of the estimated error bands on the obtained results.
This was also expected due to the previous remarks on the reduced numerical
diffusivity that the web mesh provides.

The same trends in the mesh convergence analysis were found in the full
power case. In particular, the results were still consistently in the asymptotic
convergence range and the web mesh proved to be a more desirable choice
with respect to the triangular mesh. The associated uncertainty bands were
approximately twice as smaller when compared to the low power scenario.

5.4.2.2 Windowed model

The mesh choice for the windowed model is defined by a larger number of
parameters when compared to the windowless model as there are multiple
axial regions (Figure 5.3.1 c).

The mesh convergence properties of a windowed mesh with similar mesh
parameters as those selected for the windowless model were assessed. The
investigated windowed mesh consisted in a web mesh with nR = 4, nG = 4 (i.e.
the same as for the windowless model), nS = 4 (the bare minimum required
to model windows of the correct size) and a variable number of mesh nodes
depending on the axial zone. Separate axial and radial refinement studies were
performed on the mesh for the low power and high power cases. Results for
the web mesh only (the triangular mesh was not investigated) for the high
power case are presented in Table 5.4.2.

Value (K) Refinement q (−) GCI1 (%) GCI2 (%) ACR (%) Te(K) ∆T (K)

TC 864.56 Radial 4.30 0.053 0.003 99.997 863.94 0.61
Axial 1.19 0.195 0.086 99.936 862.31 2.25

TG 712.64 Radial 0.81 0.146 0.083 99.952 711.26 1.38
Axial 1.39 0.250 0.095 100.079 715.02 2.38

Table 5.4.2: mesh convergence results for the outlet bulk temperature of the central assembly
TC and gap TG for the high power case for the windowed web mesh. The results are
presented for radial and axial refinements starting from the results obtained by a web mesh
with: nR = 4, nS = 1, nG = 4 and a variable number of axial nodes depending on the axial
region. The columns Te and ∆T report the extrapolated temperature values and the error
bands respectively.

All of the results are in the asymptotic convergence range, and the same was
observed for the low power case. The associated uncertainty bands are of the
same order of magnitude as for the windowless case. However, the relative im-
portance of axial refinement with respect to radial refinement is increased in
this case, as testified by the reported uncertainty bands. The same was found
for the low power case. This was expected, as the outlet bulk temperatures
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are no longer shaped exclusively by the heat transfer process across the wrap-
per, but also by the 3-D mixing processes that occur at the windows. As an
example, the differences in flow resolution around wrapper windows between
the coarsest and the most refined (both axially and radially) case is presented
in Figure 5.4.2.

In conclusion, the selected web mesh that is radially identical to and axially
comparable to the one used for the windowless model was found to be suitable
for the windowed model as well.

Figure 5.4.2: superficial velocity magnitude distribution at the height of the wrapper win-
dows (black lines represent wrappers) over a 2-D slice parallel to the assembly axis for a
high power blockage case: a) for the coarsest mesh; b) for the finest mesh (i.e. number of
nodes in all directions increased by a factor 4).
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5.5 Assessment of inter-assembly gap, wrapper
window behaviour

The investigation was performed parametrically for two scenarios: 1) full power
and flow conditions corresponding to nominal operation values (fP = 100%,
fN = 100%), which will be referred to as “full power” case; 2) low power and
flow conditions compatible with core status in natural circulation regime af-
ter a protected transient (fP = 5%, fN = 5%), which will be referred to as
“low power” case. For each of the two scenarios, simulations were performed
for different combinations of the central assembly sodium velocity (to model
blockage) and inter-assembly gap sodium velocity. Each simulation is per-
formed on all three models, “adiabatic”, “windowless” and “windowed”. To
better visualize the thermal-hydraulics of the system, results obtained by the
simulation of one of the multiple investigated cases is reported in Figure 5.5.1.

Figure 5.5.1: temperature distribution in the windowed model for fP = 5%, fN = 5%,
fC = 40%, fG = 20%. On the right, the velocity streamlines are reported to highlight
sodium leakage from the surrounding assemblies to the gap, and from the gap to the central
assembly undergoing partial blockage. The wrappers are highlighted in white on the right
slice.

5.5.1 Full power case

A comparison of the central assembly outlet bulk temperatures, for varying
magnitudes of the central assembly sodium velocity and gap velocity are pre-
sented in Figure 5.5.2. These temperature profiles are reported only for those
cases that did not reach boiling.

It can be observed that an increase in the inter-assembly gap sodium ve-
locity leads to an overall decrease in the central assembly outlet bulk temper-
ature, as expected. This dependence is considerably more prominent in the
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Figure 5.5.2: high power, high flow case: outlet bulk temperature of the central assembly
for the: a) windowless model; c) windowed model. Difference between the central assembly
temperatures between: b) the windowless and adiabatic models; d) the windowed and adi-
abatic model. The temperatures are reported against the gap sodium velocity fraction fG
for different central assembly sodium velocities fC .

windowed (Figure 5.5.2 c) rather than the windowless (Figure 5.5.2 a) model,
due to the mixing with the cooler sodium in the inter-assembly gap provided
by the windows. This is further strengthened by comparing the differences
in outlet bulk temperatures between the windowless and adiabatic (Figure
5.5.2 b) and windowed and adiabatic (Figure 5.5.2 d) models. While these
differences are relatively small at nominal operation (i.e. fC = 100%), they
grow progressively larger for lower sodium velocities in the central assembly.
This is consistent with the fact that, for a sodium velocity fraction fC ≤ 60%,
sodium inflow in the central assembly from the windows is observed. This
is observed even for a null inter-assembly gap sodium velocity, meaning that
cooler sodium from the neighbouring assemblies leaks into central assembly
undergoing blockage via the windows and inter-assembly gap. In particular,
it was found that a central assembly sodium velocity fraction fC ≤ 30% (i.e.
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flow blockage ≥ 70%) leads to boiling in the windowless model, but not in the
windowed model due to the additional cooling windows provide.

The dependence of the central assembly outlet bulk temperature on flow
parameters does not necessarily represent the behaviour of the maximum tem-
perature in the central assembly. As a matter of fact, it was found that the
maximum central assembly temperature in the windowless model is essentially
unaffected by gap flow (i.e. differences < 0.1 K). This is not the case for the
windowed model, as reported in Figure 5.5.3.

Figure 5.5.3: high power, high flow case: a) maximum temperature in the central assembly
of the windowed model; b) difference between the maximum temperatures obtained by the
windowed and adiabatic models. These are presented against inter-assembly gap sodium
velocity fraction fG at various central assembly sodium velocity fractions fC .

While the dependence of the maximum central assembly temperature on gap
sodium velocity is weaker than for the outlet bulk temperature (Figure 5.5.3
a), two observations can be made when comparing it against the adiabatic
model (Figure 5.5.3 b): 1) at nominal operation (fC = 100%) the maximum
temperature in the windowed model is marginally higher than in the adiabatic
model; 2) the behaviour of the maximum temperature with respect to gap
velocity is not consistently monotonic.

With regard to the first observation, this is due to the fact that at nominal
operation the pressure difference between the gap and assemblies is negative,
meaning that sodium outflows from the assemblies into the gap. With increas-
ing gap velocity, the pressure drop over the axial length of the gap increases.
The magnitude of the pressure difference between the gap and assemblies at
the height of the windows thus decreases, limiting the outflow. If the pressure
difference between gap and assembly was to be further increased and become
positive by e.g. a decrease in the central assembly velocity, sodium inflow
in the assembly is observed instead, leading to a reduction of the maximum
temperatures with respect to the adiabatic model. With regard to the sec-
ond observation, the non-monotonic behaviour of the maximum temperature
of the windowed model for fC ≤ 40% is a consequence of the 3-D nature of
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the sodium jet flowing into the central assembly from the windows. For fixed
sodium velocity magnitudes at the inlet of the central assembly and the neigh-
bouring assemblies, increasing the gap sodium velocity results in two effects:
1) the pressure difference between gap and central assembly increases, favour-
ing sodium inflow into the central assembly; 2) the pressure in the vicinity
of the windows in the central assembly decreases due to the increase of the
velocity of the inflowing sodium jet.

With regard to the second observation, this can be clearly observed in Fig-
ure 5.5.4, as for high sodium gap velocity (Figure 5.5.3 a), the velocity profile
in the bulk of the central assembly deviates towards the windows, while this
effect is considerably less prominent at low gap sodium velocity (Figure 5.5.3
b). From the perspective of variations in the maximum temperature in the
assembly, these two effects are opposing. Sodium inflow in the assembly will
favour the decrease in the maximum temperature. Conversely, a flow widening
at the height of the window region will results in a lower axial sodium velocity.
Given that the maximum temperature is found to be on the assembly center-
line at the height of the windows, this results in a increase of the maximum
sodium temperature. This effect becomes more prominent at lower sodium
velocities because of the increased velocity difference (and thus pressure dif-
ference) between the inflowing sodium jet from the windows and the central
assembly sodium flow.

With regard to the time-to-boil, it was found that the gap flow had no effect
in appreciably delaying its onset in no case that reached boiling temperatures.
This is due to the fact that at full power the heat up process subsequent to
a severe blockage (i.e. fC ≤ 30% in the adiabatic and windowless models,
fC ≤ 20% in the windowed model) is so rapid to be essentially adiabatic and
in the order of magnitude of a few seconds. Thus, no results of interest are
reported in this regard.

5.5.2 Low power case

A comparison of the central assembly outlet bulk temperatures, for varying
magnitudes of central assembly sodium velocity and gap velocity are presented
in Figure 5.5.5. As before, these temperature profiles are reported only for
those cases that did not reach boiling.
The overall trends are the same as those observed for the full power case in
Figure 5.5.2. There is an overall increased in magnitude of the additional
cooling power that the windowed (Figure 5.5.5 c) and windowless model (Fig-
ure 5.5.5 d) features provide with respect to the adiabatic case. The slope
changes observed in the bulk temperature profiles for the windowless case
(Figure 5.5.5 a and Figure 5.5.5 b) are associated with the laminar-turbulent
transition of the fluid flow in the inter-assembly gap. Outlet bulk tempera-
tures are not reported for fC ≤ 30% because boiling is reached for both the
windowless and windowed models. For the adiabatic model, boiling is reached
for fC ≤ 40%.With regard to the maximum temperatures in the system and
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Figure 5.5.4: comparison between the full power, full flow superficial velocity streamlines
at fC = 30% in the windowed model for two different inter-assembly gap velocities: a)
fG = 100%, b) fG = 20%. The view consists of a 2-D slice parallel to the main flow
direction that encompasses the central assembly, the inter-assembly gap and part of the
neighbouring assemblies. The position of the assembly wrappers and thus the windows is
highlighted in black.

their dependence on flow parameters, results are presented in Figure 5.5.6.
At these low power and flow conditions, the inter-assembly gap is capable of
sorting an effect on the maximum temperatures, unlike what was observed for
the full power and flow case. This is due to the diffusive effects becoming more
prominent as the importance of advective effects on heat transfer decreases at
lower sodium velocities.
With regard to the time-to-boil, both the windowless and windowed models
were found to perform comparably in term of delaying the onset of boiling with
respect to the adiabatic case. For this reason, only time-to-boil results rela-
tive to the windowed model and its comparison against the adiabatic model
are presented in Figure 5.5.7. The overall boiling delay effects grow smaller
in magnitude for lower central assembly sodium velocities (i.e. higher block-
ages) as expected. On the other hand, inter-assembly gap flow can provide an
additional margin to boiling delay.
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Figure 5.5.5: low power, low flow case: outlet bulk temperature of the central assembly for
the: a) windowless model; c) windowed model. Difference between the central assembly
temperatures between: b) the windowless and adiabatic models; d) the windowed and adi-
abatic model. The temperatures are reported against the gap sodium velocity fraction fG
for different central assembly sodium velocities fC .

5.6 Conclusions
This chapter dealt with the further expansion of the methodology and with its
application to characterize some features of interest in the recent ESFR core
design, namely: the inter-assembly gap and novel assembly wrapper windows.
A wrapper heat transfer model was developed and verified against analytical
solutions. The developed heat transfer model neglects the thermal inertia
of the wrapper, which is acceptable for thin baffles made of a relatively low
specific heat capacity material. The localized pressure losses at the windows
were modelled as those that would be expected from a 90-degree miter bend
of the same hydraulic diameter.

The parametric investigation at two different power and flow levels was
performed on three different models: 1) a single assembly (referred to as “adi-
abatic” model); 2) seven assemblies with thermally conductive wrappers (re-

122



Figure 5.5.6: low power, low flow case: maximum temperature in the central assembly for
the: a) windowless model; c) windowed model. Differences of the maximum temperature
between: b) the windowless and the adiabatic models; d) the windowed and the adiabatic
models. These are presented against inter-assembly gap sodium velocity fraction fG at
various central assembly sodium velocity fractions fC .

ferred to as “windowless” model); 3) seven assemblies with thermally conduc-
tive wrappers and windows (referred to as “windowed” model).

The most important results are hereby summarised. 1) At reference power
and flow conditions, sodium outflow from the assemblies through the windows
is observed. This results in a small assembly outlet bulk temperature increase
≤ 5 K depending on the inter-assembly gap sodium velocity. 2) For any inves-
tigated central assembly sodium velocity below nominal values, sodium inflow
in the assembly through the wrapper windows is observed. This was always
found to reduce both the assembly outlet temperatures and the maximum as-
sembly temperature by appreciable quantities with respect to the thermally
insulated, windowless wrappers. 3) The change in maximum assembly coolant
temperature with respect to inter-assembly gap sodium velocity is not always
monotonic in the presence of wrapper windows. This was found to be due
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Figure 5.5.7: low power, low flow case: a) time-to-boil of the windowed model; b) difference
in time-to-boil between the windowed and adiabatic models. These are presented against the
inter-assembly gap sodium velocity fraction fG for various central assembly sodium velocity
fractions fC .

specifically to 3-D effects of the inflowing sodium jet from the wrapper win-
dows. 4) Inter-assembly gap flow in the absences of wrapper windows was
found to be less effective than the windowed wrapper in lowering outlet bulk
temperatures for varying magnitudes of the inter-assembly gap sodium veloc-
ity. Furthermore, it was found to have no effect at all on the maximum assem-
bly temperatures at nominal flow conditions due to the dominance of advective
effects compared to diffusive effects. 5) It was found that inter-assembly gap
flow, with or without windows, is capable of preventing boiling for some flow
conditions at nominal power levels when compared to the thermally insulated
wrapper case.

This chapter also tackled the issue of mesh convergence in coarse-mesh
applications. A coarse-mesh has limited room for improvement in terms of
mesh independence of the results when compared to traditional fine mesh ap-
proaches. For this reason, a suitable mesh convergence methodology was pro-
posed to assess the most suitable coarse mesh for the investigated cases and
to establish the expected uncertainty bands. The chosen meshes satisfied the
requirements of providing outlet bulk temperatures in the asymptotic conver-
gence range. The estimated uncertainty bands on the outlet bulk temperatures
varied in the 1 K − 8 K range depending on the case.
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Chapter 6

Multi-physics investigation of
FFTF LOFWOS Test 13

6.1 Introduction
The thermal-hydraulics methodology and its implementation that have been
presented so far have been integrated in the GeN-Foam multi-physics code.
This integration process also saw further developments in the overall coupling
algorithm with the other physics, namely neutronics and thermal-mechanics.
It is recalled that a coarse-mesh approach carries the advantage of a straight-
forward coupling with other physics owing to the possibility of employing stan-
dardized field manipulation and mesh projection algorithms.

An excellent opportunity to test the multi-physics capabilities of the code
was identified in the International Atomic Energy Agency (IAEA) coordinated
reasearch project (CRP) on the benchmark re-analysis of Loss Of Flow With-
out SCRAM (LOFWOS) Test 13 [89] performed at the Fast Flux Test Facil-
ity (FFTF), a former experimental Sodium-cooled Fast Reactor (SFR). The
test consisted of a rapid Unprotected Loss Of Flow (ULOF) transient to as-
sess the effectiveness of a novel passive safety feature, namely the so-called
Gas Expansion Modules (GEMs) [90]. Although this transient did not re-
sult in sodium boiling, it allowed to test the multi-physics capabilities of the
code. First, the steady-state reactor conditions were obtained via a one-way
coupling between diffusion-based neutronics and one-phase thermal-hydraulics
while the transient simulation relied on a tight coupling between the one-phase
thermal-hydraulics and a point kinetics model, with the flux shape resulting
from the diffusion calculation.

Section 6.2 discusses the integration of the developed thermal-hydraulic
methodology within the multi-physics framework of GeN-Foam. It discusses
the global coupling algorithm and introduces the capabilities of the two other
sub-solvers for neutronics and thermal-mechanics. Section 6.3 provides an
overview of the FFTF reactor and of the transient under investigation. Section
6.4 discusses how the system of interest has been modelled and simulated
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with a coarse-mesh approach, covering in particular two aspects: 1) thermal-
hydraulics modelling with emphasis of novel developments such as intermediate
heat exchangers (IHXs) modelling; and 2) neutronics modelling for both the
steady-state diffusion-based calculations as well as the point kinetics model
inclusive of the effects of the GEMs. Section 6.5 presents the results of the
multi-physics investigation and compares them against available experimental
data, with an additional parametric investigation for parameters of relevance.
Section 6.6 draws the main conclusions of the chapter.

6.2 Multi-physics framework
The integration of the developed thermal-hydraulic solver in GeN-Foam was
simplified by the underlying shared OpenFOAM framework and the way in
which sub-solvers are organized, namely encapsulated in individual objects
with the coupling fields managed by the top-level algorithm.

The present section will discuss in greater detail the multi-physics capa-
bilities as a whole. Sub-section 6.2.1 presents the scope of each individual
physics and its inter-dependency on the other physics from the perspective of
the coupling fields. Sub-section 6.2.2 presents the overall solution algorithm.

6.2.1 Single-physics capabilities and coupling fields

Each of the three individual physics, namely, thermal-hydraulics, neutronics
and thermal-mechanics, is treated by a sub-solver that relies on the run-time
selection mechanism of OpenFOAM. This allows to select the desired treat-
ment for each physics without code re-compilation. This also enables to indi-
vidually control which single-physics should be solved and which should not,
enabling a variety of investigations: purely thermal-hydraulics, purely neu-
tronics, coupled thermal-hydraulics and neutronics, et cetera.

From a thermal-hydraulics perspective, the available treatments consist of
the already extensively discussed one-phase and two-phase approaches. From
a neutronics perspective, these consist of diffusion [91], discrete ordinates (SN)
[92], SP3 [93] which can be used in either a transient or eigenvalue (i.e. steady-
state) mode. Within the scope of the present work, point kinetics was de-
veloped and integrated as well, for reasons discussed later. From a thermal-
mechanics perspective, the only treatment presently available consists of a
linear-elastic model for core structure mechanics at a coarse scale, combined
with a model for fuel axial expansion [20].

Each of the individual physics can operate on an individual computational
mesh to resolve different levels of geometric detail or to restrict the inves-
tigation of each single-physics to specifics portions of the overall domain of
interest [20]. The passing of coupling fields between the physics is enabled by
the mesh-to-mesh projection operations that are supported by the underly-
ing OpenFOAM framework. The single-physics sub-solvers of GeN-Foam and
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their inter-dependencies are presented in Figure 6.2.1. Each of these single-
physics is now discussed from the perspective of its interaction with the other
physics.

Thermal-hydraulics The thermal-hydraulics sub-solver consists of the
methodology and software that have been extensively discussed in the present
work. In a multi-physics context, it can be viewed as a sub-solver that operates
on a certain computational domain ΩTH . Given an input volumetric power
density q, the thermal-hydraulics sub-solver is tasked with predicting the re-
sulting fluid temperature T , density ρ and velocity u fields, as well as relevant
structure temperature fields, collectively denoted with Ts, for coupling pur-
poses. For a two-phase treatment, the fields ρ, T , u consist of mass-weighed
mixture values. The velocity field u is used only when simulating Molten Salt
Reactors (MSRs) to advect the precursors. The field q is the volumetric fuel
power density and it can pertain either to the structure (i.e. qint,s in equations
3.2.41, 3.2.42 depending on the structure thermal model, e.g. the volumetric
fuel power density of a fuel pin) or the fluid (i.e. the internal liquid fuel power
density qint,i when simulating MSRs), depending on the system under investi-
gation. The field Ts collectively denotes the temperature fields of the structure,
which can range from the fuel and cladding temperatures of a nuclear fuel pin
or an average structure temperature representing e.g. control rod drivelines,
wrappers, the diagrid, et cetera. This entirely depends on what the selected
structure thermal models are supposed to represent in the mesh cells where
they have been defined, as discussed in sub-section 3.2.4.

Neutronics The neutronics sub-solver operates on a computational domain
ΩN and is tasked with predicting the volumetric fuel power density q for vary-
ing coupling fields. Not all of these fields are always used, depending on the
selected type of neutronics treatment. In general terms, the diffusion, SN ,
SP3 treatments are capable of modelling reactivity feedbacks from: coolant
temperature T and density ρ, average fuel and cladding temperatures collec-
tively denoted with Ts, fuel axial displacement and core radial displacement
collectively denoted as d. As long as a parametrization of the macroscopic
cross sections against these quantities is provided (typically from Monte Carlo
calculations), these feedbacks can be resolved. The feedbacks of the point ki-
netics solver will be discussed separately in the modelling section 3.4, as they
have been developed in the frame of this thesis work.

Thermal-mechanics The thermal-mechanics sub-solver operates on a com-
putational domain ΩTM and is tasked with predicting an overall displacement
field that is used to deform all the computational domains ΩTH , ΩN , ΩTM .
The displacement is the one that arises due to thermal gradients of the various
structure temperature fields Ts of interest. The displacement field is further
decomposed into a fuel axial displacement and core radial displacement col-
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lectively denoted as d, which are passed to the neutronics to model feedbacks
from possible parametrizations.

While the thermal-mechanics sub-solver has enjoyed a range of applications
up to the most recent preliminary modelling of inter-assembly contact and its
effect on core thermal-hydraulics in SFRs [94], it was not employed in the
present analysis.

Figure 6.2.1: relationship between the single-physics sub-solvers of GeN-Foam, namely
thermal-hydraulics (TH), neutronics (N) and thermal-mechanics (TM).

6.2.2 Multi-physics coupling algorithm

The overall coupling algorithm is presented in Figure 6.2.2. Within each time
step:

1. Outer iteration loop. This loop is used to couple the single-physics
solution steps it encompasses. It can be performed a user-selected num-
ber of times or controlled by the convergence of the residuals of the
slowest-converging physics;

1.1. solve fluid-mechanics. This step consists of the collection of steps
regimeMap through pUEqns as discussed for the single-physics
thermal-hydraulics algorithm presented in Figure 3.3.1;

1.2. solve fluid and structure enthalpy. This step consists of the col-
lection of steps EEqns as discussed for the single-physics thermal-
hydraulics algorithm presented in Figure 3.3.1;
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1.3. interpolate thermal-hydraulics fields to thermal-mechanics
mesh. This step projects the coupling fields Ts discussed earlier to
the thermal-mechanics mesh;

1.4. solve thermal-mechanics. Solve structure expansion and pre-
dict displacement fields d, also used to deform the computational
meshes;

1.5. interpolate displacement field to all meshes and deform
meshes;

1.6. interpolate thermal hydraulic-fields to neutronics mesh.
This step projects the coupling fields ρ, T , u discussed earlier to
the thermal-mechanics mesh;

1.7. solve neutronics. This steps solves the equations representative
of the selected neutronics model. From a coupling perspective, the
new fuel power density q is obtained;

1.8. interpolate fuel power density to thermal-hydraulics mesh;

This formally consists of a Picard iteration approach [2]. Please note that steps
pertaining to any single-physics are performed depending on the coupling to be
resolved. For the investigation discussed in this chapter, the effects of thermal-
mechanics on core neutronics were captured via simplified models built into
the point kinetics neutronics model.

Figure 6.2.2: multi-physics coupling algorithm of the GeN-Foam code.
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6.3 Description of the Fast Flux Test Facility
and LOFWOS Test 13

6.3.1 The Fast Flux Test Facility

The FFTF was a 400 MWth experimental SFR located at the Hanford Site,
Washington, USA. It was operated between 1982 and 1992 to test advanced
nuclear fuels, materials and components to support the future operation of
then-planned commercial fast reactors, with particular emphasis on the inves-
tigation of passive safety features, some of which innovative [90][95].

The reactor design consists of a hybrid pool-loop type, wherein the core was
accommodated in a pool within the reactor vessel while the IHXs and pumps
are located outside the pool. The plant is schematically represented in Figure
6.3.1 while the vessel is represented in Figure 6.3.2. The plant did not produce
electricity and its thermal output was ultimately discharged to the atmosphere
via so-called dump heat exchangers (DHXs) on the secondary loop. The most
relevant reactor parameters are reported in Table 6.3.1. A comprehensive
technical description of the FFTF circuits, vessel, core, assemblies and fuel
can be found in [96] and is not reported for brevity.

Figure 6.3.1: overview of the FFTF components and loops. Courtesy of Cabell [96].
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Quantity Value Quantity Value
Thermal power (MW ) 400 No. of fuel assemblies (−)
Core volumetric flow rate (m3/s) 2.74 - inner core 32
Core outlet temperature (K) 799.9 - outer core 48
Prim. cold leg temperature (K) 633.2 No. f pins per assembly (−) 217
Prim. mass flow per loop (kg/s) 730.5 Assembly pitch (cm) 12.014
No. of primary loops (−) 3 Wrapper material SS-316
Sec. hot leg temperature (K) 729.3 Wrapper inner flat-to-flat (cm) 11.621
Sec. cold leg temperature (K) 586.0 Wrapper thickness (mm) 3.050
Sec. mass flow per loop (kg/s) 730.5 Fuel MOX
No. of secondary loops (−) 3 Pu content (%, wt.)

- inner core 24.06
- outer core 28.52

Pellet diameter (mm) 4.940
Pellet column height (cm) 91.44
Cladding material SS-316
Cladding inner diameter (mm) 5.080
Cladding outer diameter (mm) 5.842
Spacer wire material SS-316
Spacer wire diameter (mm) 1.445
Sparer wire lead length (cm) 30.2

Table 6.3.1: Reference FFTF data at nominal reactor conditions (left), together with as-
sembly, fuel data for LOFWOS Test 13 (right).
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Figure 6.3.2: overview of the FFTF reactor vessel. Courtesy of Cabell [96].
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6.3.2 LOFWOS Test 13 and safety features demonstra-
tion

The LOFWOS series of test consisted in ULOF transients aimed at determin-
ing safety margins, demonstrate the benefits of certain design features and
obtain data for the validation of computational tools.

Among the investigated safety features, of particular interest were the
GEMs. These consisted of empty wrapper cans (i.e. containing no fuel pins)
closed at the top and filled with argon gas, placed in the periphery of the
active core. A simplified representation of their intended operational principle
is reported in Figure 6.3.3.

Figure 6.3.3: Overview of the operating principle of the GEMs. Courtesy of Cabell [96].

In regular operation, the pressure head provided by the pumps compressed
the argon gas within the GEMs, so that the sodium free surface (within the
GEMs) was found above top of the active fuel region, reducing radial neu-
tron leakage. If this pressure head was lost for any reason, e.g. in an ULOF
transient, the subsequent downward expansion of the argon gas would lower
the sodium free surface level below the bottom of the active fuel. From a
neutronics perspective, this “uncovers” the core radially, increasing neutron
leakage thus providing a large amount of negative reactivity. This safety fea-
ture proved particularly effective (up to −1.41 $ of reactivity worth for the
core configuration of LOFWOS Test 13, for a total of 9 GEMs) due to the
small radial dimension of the FFTF active core, ≈ 1.2m in diameter.

Test 13 proceeded as follows. Starting from a steady-state at half nominal
thermal power and full nominal primary and secondary mass flows, the primary
pumps were tripped, halving the primary mass flow rates within the first 7.2 s
and coasting down still in 90 s since the start of the transient. The evolution of
relevant core temperatures and mass flow was fundamentally governed by the
interplay of neutronics feedbacks with the natural circulation regime that was
established as the pumps were coasting down. These variables of interest were
measured at a variety of locations throughout the transient, and represent the
data against which the results obtained by the code are compared, in section
6.5.
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6.4 Computational modelling
The transient was investigated from the perspective of thermal-hydraulics and
neutronics coupling, and required the modelling of the steady-state preceding
the transient as well.

The steady-state was investigated in two separate steps: 1) an eigenvalue
diffusion-based neutronics calculation to predict the neutron fluxes and the fuel
power density distribution in the core; 2) a steady-state thermal-hydraulics
calculation to predict the initial conditions for the transient stemming from
the fuel power density distribution. The macroscopic cross sections for the
neutronics were obtained by the Serpent2 Monte Carlo code [97] from pre-
vious purely neutronics investigations of the FFTF core [98]. However, the
parametrizations of the cross section with respect to the feedback fields of in-
terest were not obtained. This, coupled with availability of point kinetics feed-
back coefficients (provided by the Argonne National Laboratory (ANL)) and
the difficulty of resolving the GEMs feedback with a diffusion-based approach,
led to employing a point kinetics model for the simulation of the transient.

Sub-section 6.4.1 presents the thermal-hydraulic modelling, ranging from
geometric modelling and choice of correlations for the closure of momentum
and heat transfer as well as the modelling of the thermal coupling between
primary and secondary circuits via the IHXs. Sub-section 6.4.2 presents the
neutronics modelling and the implementation of the point kinetics model.

6.4.1 Thermal-hydraulics modelling

6.4.1.1 Geometry and structure modelling

The FFTF was modelled via a 2-D hybrid computational domain. The hybrid
nature comes form the use of a wedge for the modelling of the vessel, and
parallelopipeds for the modelling of the primary and secondary pipes, IHXs
and pumps. The thermal-hydraulics computational domain is presented in
Figure 6.4.1, with its coarse-mesh properties reported in Table 6.4.2. Note
that the primary and secondary loops are geometrically disconnected, but the
heat exchange between the two is modelled via the thermally coupled IHX
regions, as it will be discussed later.

With reference to said Figure and Table, the most important modelling
choices and approximations that were made are hereby introduced for each
component of interest.

Reactor vessel and core The vessel consists of regions 1 through 15. It is
modelled as a 2-D wedge of two degrees of aperture. The reactor core consists
of regions 1 through 11, and it was obtained by averaging the radial hetero-
geneity of the actual 3-D core layout in a manner that preserves the overall
volume of each region. The coarse-mesh properties of regions such as the by-
pass (region 13), reflector (regions 8, 9, 10), radial shield (region 11), GEM
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Figure 6.4.1: computational domain of the FFTF thermal-hydraulics. It consists of a 2-D
hybrid wedge-parallelopipedal model. Regions 1 through 20 represent the primary, while
regions 21 through 25 represent the secondary. The primary and secondary loops are geo-
metrically disconnected domains that are thermally coupled via the IHX. The primary side
of the IHX consists of region 19 (red) while the secondary side consists region 24 (blue).
Open system boundaries consist of the inlet (blue segment) and outlet (red segment) of the
secondary loop. Coarse-mesh region properties are reported in table 6.4.2.

(region 7) were adjusted so to ensure the correct flow redistribution through
the core. This is justified by the significant geometric complexity of these
components (some of which consist e.g. of alternating layers of plate orifices of
varying geometries), so that some coarse-mesh properties, most importantly
the hydraulic diameter Dh (on which friction factors depend), became a model
parameter in those regions rather than a consequence of the volume-averaging
process itself.

From a thermal perspective, the behaviour of the unresolved structures is
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modelled only in the inner and outer fuel (regions 2, 6), upper and lower fuel
shields (regions 1, 3) and the two IHX sides, (regions 19 and 24). The IHX
modelling is discussed later in this sub-section.

The thermal modelling of those core regions is also meant to provide the
point kinetics with temperatures to compute feedback effects, as it will be
discussed later. With regard to Table 6.4.2, two thermal models are specified
in both the inner and outer fuel regions, namely a 0-D structure thermal model
and a 1-D nuclear fuel pin model. Within each inner or outer fuel region
mesh cell, the 0-D model represents the thermal behaviour of the non-power-
producing structures (i.e. spacer wire and assembly wrappers) according to
equation 3.2.41, while the 1-D nuclear fuel pin model represents the thermal
behaviour of the fuel and cladding according to what was discussed in sub-
section 3.2.4.

It should be noted that each thermal model t can be prescribed its own
volumetric surface area density A′′′s,t, which governs heat transfer with the fluid,
and phase fraction αs,t, which quantifies what is the actual volume fraction
of the mesh cell that is occupied by that specific thermal structure compared
to the overall structure in said mesh cell. As an example, Table 6.4.2 reports
that the overall sub-scale structure (i.e. the collection of pins, spacer wires,
wrappers) occupies a fraction αs = 0.590 of the inner and outer fuel regions,
while the spacer wires and wrappers themselves only occupy a fraction αs,t =
0.036 of it. This is relevant as αs,t is the actual αs (if specified) that figures in
the 0-D model energy equation 3.2.41. Conversely, the governing 1-D nuclear
fuel pin equation 3.2.42 does not contain any information on the structure
volume fraction αs, and the energy balance depends uniquely on the pin surface
(i.e. cladding) area density A′′′s,t. For further details, the topic of a 1-D nuclear
fuel pin model integration is further expanded in appendix A.

The thermo-physical properties of the wrappers and spacer wires required
for solving 3.2.41 consist of that of stainless steel SS-316, as that was the
material used for said components. The properties of the 1-D nuclear fuel pin
model consist of the data presented in Table 6.3.1 and were the same between
inner and outer fuel. Additional thermo-physical properties for the modelling
are reported in Table 6.4.1 for completeness.

The effects of changing linear fuel power (i.e. pellet heating or cooling)
on the gap conductance (due to the change in gap width) were modelled via
the the correlation by Lavarenne [99], developed for MOX SFR fuel. The
correlation also depends on fuel burnup. While the exact irradiation and
shuffling history of the fuel prior to LOFWOS Test 13 was not available, the
estimated average burnup was ≈ 50GWd/tHM . Nonetheless, the effect of
varying fuel burnup on the gap conductance correlation was found significant
enough on the steady state and transient results to motivate a parametric
analysis.

All the different core regions, namely regions 1 through 11 are physically
separated from other radially adjacent regions via vertical baffles, as discussed
in sub-section 5.3.2.
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Quantity Value
Fuel heat capacity (J/kg/K) 250
Fuel thermal conductivity (W/m/K) 3
Cladding heat capacity (J/kg/K) 500
Cladding thermal conductivity (W/m/K) 20
Gap conductance (W/m2/K) (300 + 1 · 10−1 q)(1 + tanh(2 · 10−2B))

Table 6.4.1: FFTF fuel modelling data. The gap conductance model is the one proposed
for SFR MOX fuel by Lavarenne [99], wherein q is the pin linear power in W/m and B is
the fuel burn-up in GWd/tHM .

Please note that no specific tortuosity modelling was performed, i.e. the tor-
tuosity tensor is an identity tensor in the entirety of the domain. Due to
the axially-extruded geometry of the pins, the tortuosity would only affect
heat and momentum diffusive processes in the radial direction within the core.
However, these were deemed of little importance for the investigation of the
transient at hand.

Primary loop The primary loop consists of regions 16 through 20, modelled
as 2-D parallelopipes. While the FFTF had three primary loops, these were
modelled as a single loop with the same total volume, scaled by the vessel
wedge size. In practical terms, the ratio of the 2-D primary loop volume to
the sum of the real volumes of the three primary loops is 2/360, which is the
same as the ratio of the 2-D vessel wedge (two degrees in aperture) model
volume to the real vessel volume.

While preserving piping volume preservers fluid circulation time through
the piping, the same does not necessarily hold for the vessel, as the overall
primary circuity re-circulation time will depend on fluid stagnation zones,
which significantly approximated in 2-D. Another consideration that needs to
be made is that the primary loop shape, length and elevation changes were
significantly simplified, which prevents a meaningful estimation of the pressure
drops in the primary piping. However, as most of the system frictional pressure
drops take place in the reactor core, this is was deemed acceptable, also in light
of the way the primary pump (region 17) is modelled.

An additional time-dependent momentum source field Mpump is in fact
defined exclusively over said region and is added to the source term Su of
the momentum equation 3.3.6, as seen in chapter 3. This momentum source
was obtained iteratively so to reproduce the experimental mass flow rate ramp
down in the primary loop for the modelling of the transient. For this reason, an
accurate modelling of the primary loop pressure drops was deemed of secondary
importance. An additional primary loop component of relevance is the IHX,
more particularly the primary side of the IHX (region 19), which allows to
thermally couple the two otherwise geometrically disconnected loops.

Secondary loop The three secondary loops were modelled based on the
same considerations made for the primary loops. The secondary loops are not
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however modelled in their entirety. These extend from the outlet of the DHX,
which constitute the inlet of the modelled secondary loop (blue segment in
Figure 6.4.1) to the inlet of the DHX (red segment in Figure 6.4.1). This was
done as boundary conditions for the secondary loop were provided at these
locations based on experimental data.

The secondary pump was modelled for completeness (to preserve circu-
lation time within the modelled portion of the secondary loop) but no mo-
mentum source was defined there, as the mass flow through the secondary is
imposed via velocity boundary conditions at the loop inlet. The secondary
loop also contains the secondary side of the IHX (region 24), which allows to
thermally couple the two otherwise geometrically disconnected loops.

Region
αs (−) Dh (m)

Thermal structure modelling
No. Name Type αs,t (−) A′′′s,t (m

2

m3 )

1 Lower fuel shield 0.867 0.0112 0-D 0.867 27.56

2 Inner fuel 0.590 0.0032
0-D 0.036 100.93
1-D NFP N/A 379.30

3 Upper fuel shield 0.590 0.0032 0-D 0.036 100.93
4 Lower CR shield 0.950 0.0019
5 Control rod (CR) 0.630 0.0051

6 Outer fuel 0.590 0.0032
0-D 0.036 100.93
1-D NFP N/A 379.30

7 GEM 0.200 1 · 10−6

8 Lower ref. shield 0.971 0.0002
9 Reflector 0.928 0.0031
10 Upper ref. shield 0.928 0.0005
11 Radial shield 0.945 0.0002
12 Diagrid 0.590 0.005
13 Bypass 0.996 6 · 10−4

14 Lower plenum 0 6.29
15 Upper plenum 0 6.29
16 Primary hot leg 0 0.6922
17 Primary pump 0 0.0032
18 Primary junction 0 0.3874
19 IHX (primary side) 0 0.0011 IHX N/A 106.67
20 Primary cold leg 0 0.3874
21 Secondary cold leg 0 0.3874
22 Secondary pump 0 0.3874
23 Secondary junction 0 0.3874
24 IHX (secondary side) 0 0.0011 IHX N/A 106.67
25 Secondary hot leg 0 0.3874

Table 6.4.2: Coarse-mesh properties of the thermal-hydraulics 2-D domain of the FFTF as
represented in Figure 6.4.1.

IHX modelling The three IHXs (one per primary loop) were modelled as
a single IHX whose sides are split between the primary loop (region 19) and
secondary loop (region 24).

From a thermal perspective, a novel structure model was developed which
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allows to treat the fluid heat transfer between the two loops, not dissimilar
from the wrapper heat transfer modelling discussed in sub-section 5.2.1. While
the modelling presented hereby is fundamentally applicable to any IHX design,
let us consider the FFTF IHX design, namely a shell and tube heat exchanger.
In such a design, the primary circuit coolant flows through a shell that hosts
a tube bundle, while the secondary circuity coolant flows through said tube
bundle, with the heat transfer taking place through the tube walls. A volume
Ω is superimposed over a possible detailed geometry of such a configuration in
the center of Figure 6.4.2.

Figure 6.4.2: middle: representation of the unresolved detailed geometry of an IHX, which
is partly covered by a tentative computational mesh cell Ω. Tube surface temperatures are
referred to as T+

s on the outer tube side (corresponding e.g. to the FFTF primary side) and
T−s on the tube inner side (corresponding e.g. to the FFTF secondary side). Left: coarse-
mesh representation of the IHX primary side (i.e. a cell of region 19 in Figure 6.4.1). Right:
coarse-mesh representation of the IHX secondary side (i.e. a cell of region 24 in Figure 6.4.1).

Within said volume Ω: 1) the average fluid temperature is denoted with T+ on
the primary side (i.e. outside the tube bundle), and with T− on the secondary
side (i.e. inside the tube bundle); 2) the average tube surface temperature is
denoted with T+

s on the primary side (on the red tube surfaces), and with T−s
on the secondary side (on the blue tube surfaces); 3) the average fluid-tube
surface heat transfer coefficients are denoted with H+ on the primary side and
H− on the secondary side, with the tube wall heat transfer coefficient denoted
with Hw.

Assuming that: 1) the tube wall is thin enough so that the surface area of
the inner and outer tube wall is the same within the considered volume; 2) the
absolute heat capacity of the wall compared to the fluid is small enough to be
neglected; then an instantaneous heat flux balance holds between the primary
and secondary loops, so that the same relationship between the inner and outer
tube surface temperatures and fluid temperatures that were obtained for the
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wrapper heat transfer model hold, namely equations 5.2.1, 5.2.2:

1
1
Hw

+ 1
H+

(T+ − T−s ) = H−(T−s − T−) (6.4.1)

1
1
Hw

+ 1
H−

(T− − T+
s ) = H+(T+

s − T+) (6.4.2)

The idea is to model the heat transfer through the IHX tube walls by calcu-
lating the wall surface temperatures T+

s , T−s as described by equations 6.4.1,
6.4.2. This approach fits well with the existing modelling framework for the
description of fluid-structure heat transfer, treated via source or sink terms in
the form of equation 3.2.26 discussed in subsection 3.2.3, which only requires
knowledge of a structure surface temperature, fluid-structure heat transfer co-
efficient and structure interfacial area density. With regard to the former, due
to the modelling choices, an average between the inner and outer tube surface
area is used for the calculation of the tube surface area density. The wall heat
transfer coefficient Hw is user-provided.

Compared to the wrapper heat transfer model, which updates the wrapper
surface temperature in a segregated manner due to the OpenFOAM boundary
condition management framework, the system of the two equations 6.4.1, 6.4.2
can be re-arranged implicitly for the two variables T+

s , T−s , so that:

T+
s =

B+A− +B−

A+A− − 1
(6.4.3)

T−s =
B−A+ +B+

A−A+ − 1
(6.4.4)

with:
A± =

H± +Hw

Hw

(6.4.5)

B± =
H±T±

Hw

(6.4.6)

Equations 6.4.3, 6.4.4 are thus used to update the structure (i.e. IHX wall)
surface temperatures similarly to how equations 3.2.41, 3.2.42 are used to
update the structure temperatures of a generic 0-D structure thermal model
or a 1-D pin model.

An important aspect related to the implementation of these equations needs
to be discussed. Assuming that the volume Ω is a mesh cell, the representation
of the IHX model shown in center of Figure 6.4.2 would require two sets of
fields modelling the coolant temperature T and the coolant-wall heat transfer
coefficient H coexisting in each mesh cell, one for the primary side and one
for the secondary side. The most effective way to tackle this was to split the
IHX computational domain into two fluid-mechanically separate domains, the
primary side (i.e. region 19 in Figure 6.4.1, with a computational mesh cell
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represented on left side in Figure 6.4.2) and the secondary side (i.e. region 24
in Figure 6.4.1, with a computational mesh cell represented on right side in
Figure 6.4.2). Thus, with respect to Figure 6.4.1, the coolant temperature T
in cells belonging to region 19 corresponds to T+ and the tube wall structure
temperature Ts corresponds to T+

s , with the same holding for T− and T−s on
the secondary side in region 24. However, as it can be see from equations 6.4.3,
6.4.4, the update of the tube wall temperature on any side of the tube requires
knowledge of the coolant fields on the other side as well. To obtain these
values, OpenFOAM-enabled mesh-to-mesh projection operations are used to
interpolate the coolant and tube surface temperature fields from one region
to another. The mesh-to-mesh projection operations are in fact also possible
between different cell regions belonging to the same single-physics mesh, such
as is the case of the thermal-hydraulics. This projection operation is meaning-
ful as long as both mesh regions modelling the primary and secondary side of
the IHX have the same overall geometric shape and volume, so that a one-to-
one correspondence between different mesh cells of the regions is maintained.
While it is not required that the two mesh over the two regions are confor-
mal for the projection operation to work, conformal meshes ensure the highest
degree of energy conservation.

By denoting the mesh-to-mesh projection operation of a quantity • from
region + to region − with •|+→−, and vice-versa for •|−→+, it follows from
6.4.3 that on the primary side one has:

Ts =
B (A|−→+) + (B|−→+)

A (A|−→+)− 1
(6.4.7)

while it follows from 6.4.4 that on the secondary side one has:

Ts =
B (A|+→−) + (B|+→−)

A (A|+→−)− 1
(6.4.8)

with A, B defined as of 6.4.5, 6.4.6. Note that all the superscripts have been
dropped as these fields A, B are now computed from the only existing values
of the fluid temperature and fluid-structure heat transfer coefficient existing
in each mesh cell, as the primary and secondary domains have been physically
separated.

If the coolant on any (or both) sides of the IHX consists of a two-phase mix-
ture (for any reason), the model presented is still applicable as long as the fluid
temperature T and fluid-coolant heat transfer coefficient H are substituted by
their mixture values as defined in equations 3.2.40 and 3.2.39 respectively, as
discussed in sub-section 3.2.4.

As a final clarification, similarly to other structure thermal models, equa-
tions 6.4.7, 6.4.8 are employed at step seven of the thermal-hydraulic coupling
algorithm discussed in sub-section 3.3.3, right before the solution of the fluid
enthalpy equations.
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6.4.1.2 Closure modelling

The closure models for momentum and heat transfer between fluid and struc-
ture are hereby introduced with respect to the various regions defined in Figure
6.4.1.

Flow regime map Two flow regimes have been considered for this one-
phase scenario, parametrized with respect to the Reynolds number, namely a
laminar regime for Re < 1000 and a turbulent regime for Re > 2300, as seen
for the investigations of chapter 5. A quadratic interpolation of the friction
factors, Nusselt numbers for the modelling of momentum and heat transfer in
the transition flow regime was used.

Momentum transfer The momentum transfer due to the pump momentum
source in the primary pump (region 17) was introduced earlier, and it was set so
to reproduce the experimental mass flow rate ramp down for the transient. The
momentum transfer due to frictional pressure losses was modelled as follows.
The Rehme correlation [75] for the friction factor in wire-wrapped fuel pin
bundles was used for the turbulent flow regime in all pin bundle regions, namely
regions 2, 3, 5, 6, 10, 19, 24 for the turbulent flow regime. The Churchill
correlation [100] for the friction factor was used for the turbulent flow regime in
all structure regions that did not consist of a pin bundle, namely regions 1, 7, 8,
9, 10, 11, 12, 17, 22 with an assumed relative surface roughness of 1 ·10−6. The
Blasius correlation for the friction factor was used for the turbulent flow regime
in the pipe regions 16, 17, 18, 20, 21, 23, 25. No friction factor correlations
(i.e. no frictional pressure drops) were modelled in the pool plena. For the
laminar flow regime, the well know analytic friction factor fd = 64/Re was
used for all regions (except the plena). While this factor is derived specifically
for circular ducts, it was deemed conservative enough for the task at hand.

Heat transfer Heat transfer closure relied on correlations for the Nusselt
number in the form of equation 3.2.28. Said correlations were specified only in
those regions where heat transfer phenomena between fluid and structure are
intended to take place, namely regions 1, 2, 3, 6, 19, 24. For the laminar flow
regime, a constant Nusselt of 3.66 was employed, which is the value for fully
developed pipe laminar flow for a constant pipe temperature [101]. While not
all components can be characterized simply as pipes, and while the surface
temperature of structure was certainly not constant, it was deemed a more
conservative choice compared to a Nusselt of 4.36, used in laminar flow regimes
for constant wall heat flux scenarios instead. Nonetheless, the impact of the
laminar correlations was investigated. For the turbulent flow regimes, the
Nusselt number correlation by Mikityuk was employed [38] for all regions,
with region-specific coefficients that depend on the pitch-diameter ratio of the
bundle in each region. While region 1 does not properly consist of a pin bundle,
the same correlation as that used for region 2, 3, 6 was used for simplicity.
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6.4.1.3 Fluid thermo-physical properties

The thermo-physical properties of the coolant were those of sodium as compiled
by Fink and Leibowtiz [73] evaluated at a constant temperature of 633.2K,
namely the primary cold leg temperature. This was done to deal with the
fact that the primary circuity is modelled as a closed domain which offers no
room for an expanding liquid with temperature changes. While this can be
mitigated by modelling a small aperture within the core to allow for inflow-
outflow (e.g. representative of the interface between the sodium free surface
and the argon cover layer in the upper vessel plenum), this approach was
deemed sufficient for the case at hand. Buoyancy effects were treated via an
additional momentum source modelled with the Boussinesq approximation,
which was of fundamental importance to treat natural convection established
after pump trip.

6.4.2 Neutronics modelling

6.4.2.1 Geometric modelling

The neutronics mesh consists of a 2-D wedge domain as presented in Figure
6.4.3. It is defined exclusively for the reactor core, corresponding to regions 1
through 11 of the thermal-hydraulics mesh presented in Figure 6.4.1. While all
of the boundaries of the thermal-hydraulics core regions match the boundaries
of the different regions of the neutronics mesh, the latter is subdivided in a
larger number of regions. This is done to account for the spatial variability of
the macroscopic cross sections.

6.4.2.2 Role of the geometric model

The geometric model was used for the steady-state diffusion neutronics calcu-
lations to obtain the volumetric fuel power density field q that then acts as
the nuclear fuel pin power source term qint,s as seen in equation 3.2.42, once
interpolated to the thermal-hydraulics mesh.

The macroscopic cross sections that were used for the different regions
were generated by Nikitin [98] in a previous collaboration for a neutronics-
only analysis of the FFTF control rods worth with various computer codes,
inclusive of GeN-Foam, with a 24-energy group binning [102]. As mentioned
earlier, the exact fuel history for Test 13 was not available in detail. However,
it was deemed reasonable enough to re-use the obtained macroscopic cross
sections. Nonetheless, it was of interest to assess the impact of this choice,
so that transient calculations were performed both with a flat power density
distribution as well as the one obtained by the diffusion neutronics model.

With regard to the transient, which relies on a point kinetics model (which
is spatially 0-D by definition), the geometric model was used exclusively for
the adjoint flux-weighted averaging of the fields required for the calculation of
reactivity feedbacks [103]. While the adjoint flux distribution was not directly
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calculated, the sum of all the multi-group fluxes obtained by the steady-state
diffusion calculation was deemed a reasonable approximation of the flux that
would be obtained by a one-energy-group diffusion calculation, which is self-
adjoint [104].

Figure 6.4.3: computational domain of the FFTF neutronics. It consists of a 2-D wedge
model.

6.4.2.3 Point kinetics modelling

The point kinetics equations [104] were implemented as an additional possible
neutronics treatment in virtue of their widespread use. These can be derived
from the neutron transport equation and are formulated as:

d

dt
n =

ρ− β
Λ

n+
∑
i

λiCi (6.4.9)

d

dt
Ci =

βi
Λ
n− λiCi (6.4.10)

with n the neutron population density, ρ the system reactivity, β the total
delayed neutron fraction, Λ the prompt neutron generation time, and βi, λi,
Ci, the delayed neutron fraction, decay constant and precursor concentration
for the i-th delayed group respectively.

The system of equations 6.4.9, 6.4.10 was implemented for any number of
delayed groups Nd (to be specified by the user), and results in a system of
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Nd + 1 equations whose discretization is hard-coded with a backward Euler
scheme.

Given knowledge of the reactor kinetic parameters βi, Λ and the reactivity
ρ, the time-evolution of n and Ci can be predicted. Due to the proportionality
between neutron density and power, the time-dependent evolution of the nu-
clear fuel power density field can be modelled as q(x, t) = q(x, t0)n(t)/n(t0),
with q(x, t0) and n(t0) being the fuel power density field and the neutron den-
sity at the initial simulation time t0. The initial values n(t0) and Ci(t0) can be
calculated from the point kinetics equations by assuming that a steady state
holds at t0. The reactivity ρ is calculated from the sum of the individual feed-
back reactivities of thermal-hydraulic and thermal-mechanical phenomena of
interest.

These reactivities are typically computed based on the adjoint flux weighted
value of thermal-hydraulic field projected to the neutronics mesh. For any
thermal-hydraulics field φ, the combination of these two operations (adjoint-
weighing the projected thermal-hydraulics field) is denoted as φ. The reac-
tivity contributions that were considered for the case of the FFTF are hereby
presented:

• fast neutron fuel Doppler reactivity contribution in the form ρf,D =
−cρ,D ln(T f/T f,0), with cρ,D the Doppler coefficient, Tf the average fuel
temperature and Tf,0 the average fuel temperature at steady-state (i.e.
at the start of the simulation);

• fuel axial expansion reactivity contribution in the form ρf,ax = cf,ax(T f−
T f,0);

• coolant density reactivity contribution in the form ρc,ρ = cc,ρ(T )(T −T 0),
with T being the coolant temperature, wherein the changes in density
are modelled via changes in average fuel coolant temperature. Due to
the Boussinesq approximation, the coolant density field is constant, and
the density change that would correspond to the equivalent temperature
change needs thus to be modelled via an adequate manipulation of the
feedback coefficient cc,ρ(T ).

• structure density reactivity contribution in the form ρs,ρ = cs,ρ(T )(T s −
T s,0) with Ts being the structure temperature of the 0-D thermal model
in those regions where it is defined, namely temperature that is taken
as representative of the average wrapper, wrapper wire, diagrid temper-
atures;

• core radial expansion reactivity contribution in the form ρexp = cexp(T s−
T s,0);

• control rod driveline expansion reactivity contribution ρCR. This re-
quires: 1) a control rod worth ρCR vs. control rod insertion ∆CR map;
2) a measure of the average absolute axial expansion ∆CR of the control
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rod drivelines. This expansion is approximated as ∆CR = c∆(T s−T s,0),
where the same field Ts used for the wrapper and wire temperature within
the core is taken to be representative of the driveline. This is a very
crude approximation but it was a consequence of the fact that the upper
plenum was not modelled in the neutronics mesh. Ideally, the control
rod driveline temperature could be modelled via a 0-D thermal model of
a porous structure in the upper plenum of the thermal-hydraulics mesh
and with an extended neutronics mesh to the upper plenum to enable
the projection of the driveline temperature field;

• GEM reactivity contribution ρGEM . This was modelled based on a sim-
ilar approach to the control rod expansion. A GEM reactivity worth vs.
sodium free surface level height l map was provided by the ANL and
determined via Monte Carlo approaches. Furthermore, ANL provided a
correlation between the core mass flow rate and the sodium free surface
level l. The GEM reactivity contribution is thus determined from the
sodium velocity field u (at the core region inlets of the thermal-hydraulics
mesh) interpolated to the neutronics mesh.

While the FFTF geometric, structural details presented so far are available in
the literature, kinetic parameters and feedback coefficients were provided by
ANL for the benchmark and could not be disclosed at the present time.

6.5 Results

6.5.1 Steady state results

The steady-state results of the FFTF neutronics and thermal-hydraulics mod-
els were obtained to provide initial conditions for the subsequent transient
simulation.

It is recalled that the employed reference model uses a fuel power density
distribution coming from the diffusion-based neutronics calculation. The volu-
metric fuel power distribution is thus proportional, in those regions containing
fuel, to the total neutron flux reported on the left-most part of Figure 6.5.1.
These flux distributions span exclusively over the core domain (i.e. regions 1
through 11). As the total flux is calculated from sum of the individual group
fluxes, some representative flux distributions (normalized for clarity) are re-
ported as well for decreasing neutron energies, left-to-right.
The overall temperature distribution and some representative velocity stream-
lines are reported in Figure 6.5.2, which also highlights the thermal coupling
between the primary and secondary circuit in the IHX regions. The cold and
hot leg of the secondary are not shown in their entirety for figure size conve-
nience.

The steady-state values for some representative system quantities are in-
stead reported in Table 6.5.1. With regards to the outlet temperatures of the
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Quantity Value
Calculated Experimental

Total power (MW ) 199.2 199.2
Primary mass flow rate (kg/s) 2205.5 2204.2
Inner core mass flow rate (kg/s) 809.6 810.2
Outer core mass flow rate (kg/s) 1068.9 1060.5
Bypass flow(kg/s) 156.1 157.5
Secondary mass flow rate (kg/s) 2215.6 2202.2
Core inlet temperature (K) 602.1 N/A

Inner core outlet temperature (K)
696.2a

702.8
706.3b

Outer core outlet temperature (K)
691.5a

679.15
680.6b

Table 6.5.1: Comparison of calculated and experimental results at steady-state prior to
the start of LOFWOS Test 13. The a and b superscripts denote result obtained by the
diffusion-based fuel power density the piecewise uniform fuel power density respectively.

Figure 6.5.1: calculated neutron flux distributions in the FFTF core for different energy
groups at steady state with the diffusion neutronics sub-solver. From left to right (peak flux
values in brackets): one-group-flux (3.4 ·1015 n/cm2/s), flux of group 7 (3.7 ·1014 n/cm2/s),
flux of group 19 (6.4 · 1013 n/cm2/s), flux of group 24 (1.5 · 1014 n/cm2/s).

inner and outer core regions, two different sets of calculated results are pre-
sented as an assessment of the impact of using the diffusion neutronics fuel
power density against a piecewise uniform fuel power density, namely two uni-
form power density distributions, one for the inner core fuel and one for the
outer core fuel. The latter was provided by ANL. As discussed earlier, the
macroscopic cross sections that were used for the calculation of the fluxes were
obtained from a previous investigation that might not be representative of the
(unknown) core fuel burnup at the time of LOFWOS Test 13. The piecewise
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uniform fuel power density distributions proved to result in the best agreement
with the experimentally measured temperatures at steady-state. Nonetheless,
both these models are further investigated.

Figure 6.5.2: calculated temperature distribution and representative velocity streamlines
in the FFTF at steady-state. The domain of the secondary loop was cut for visualization
convenience. The heat transfer between the IHX regions results in the observed thermal
gradients in said regions.

6.5.2 Transient results

The transient consisted in a unprotected pump trip and the monitoring of the
subsequent evolution of the system to assess the effectiveness of: 1) the GEMs,
which are supposed to provide enough negative reactivity to effectively shut
down the core; 2) natural circulation to remove the decay heat. The conditions
on the secondary side of the circuity were maintained constant throughout the
transient.

6.5.2.1 Reference model results

The evolution of a number of integral system parameters are reported in Figure
6.5.4 and compared against experimental results.

The total reactor power evolution (top-left) is first characterized by a rapid
decrease, primarily governed by the GEM reactivity feedback. This is observed
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both in the evolution of the total reactivity (bottom-right)and in the evolution
of the individual reactivity components, presented in Figure 6.5.3.

Figure 6.5.3: calculated results for the evolution of the various reactivity contributions
obtained by the reference computational model of FFTF LOFWOS Test 13.

The GEM reactivity contribution reaches its maximum magnitude ' 25 s after
pump trip, and the evolution of the rest of the transient is governed by the
other reactivity feedbacks. In particular, the agreement between the calculated
and experimental power is reasonable up to ' 200 s, after which disagreements
grow larger. This is a consequence of the calculated total reactivity evolution,
which consistently under-estimates the experimental one after ' 100 s. Pos-
sible explanations for this will be discussed later in greater detail when pre-
senting the sensitivity of the results to some model parameters. It is recalled
that the evolution of the GEM reactivity feedback is exclusively a function of
the total core mass flow rate, which depends on both the primary pump mo-
mentum source and the chosen frictional pressure drop models in the various
vessel regions that govern the flow distribution.

With regards to the primary mass flow rate, the momentum source was
set to reproduce the ramp down for the first 90 s, after which it is turned off
to allow for the establishment of a natural circulation regime. The agreement
between the calculated and measured total primary mass flow rates is good
throughout the transient.

With regards to the coolant temperature, the reported results compare
the calculated inner core outlet temperature evolution against the experimen-
tally measured outlet temperature of a specific assembly (PIOTA-2 [90]) in
the inner core region. It should be stated that, due to the appreciable degree
of thermal-hydraulic heterogeneity of the FFTF core, the temperature values
obtained by the code for the inner core region might not be entirely repre-
sentative of the data measured at specific inner core reactor assemblies, as an
appreciable discrepancy exists between calculated and experimental results.
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This is also addressed later when comparing calculation results obtained with
different model parameters, as well as available data in the literature obtained
by other codes. Nonetheless, the main features of the temperature evolution
were reproduced satisfactorily. At the start of the transient, the mass flow rate
decreases faster than the total power, resulting in a rapid outlet temperature
increase. In the subsequent ' 20 s however, as the power decays almost expo-
nentially while the mass flow rate decays less than exponentially, the resulting
decrease in temperature shapes the first temperature peak. As the GEM re-
activity worth is fully deployed in the first ' 25 s, the trend in reactivity
reduction is reduced and the power-to-flow ratio starts increasing again up to
the establishment of natural circulation after ' 130 s. After said point, while
the reactor power continues to decay, the primary flow rate remains reasonably
constant resulting in the overall reduction of the outlet temperature.

Figure 6.5.4: calculated results for the evolution of total reactor power (top-left), inner core
outlet temperature (top-right), total primary mass flow rate (bottom-left), total reactivity
(bottom-right) obtained by the reference computational model of FFTF LOFWOS Test 13
compared against experimental data.

For clarity, calculated temperature and velocity streamlines distributions ob-
tained by the reference model are presented in Figure 6.5.5 at: 90 s after pump
trip (when the largest outlet temperatures are attained); 300 s after the tran-
sient, as the natural circulation regime is established.
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Figure 6.5.5: calculated temperature distributions and representative velocity streamlines
in the FFTF at 90 s after pump trip (top) and 300 s after pump trip (bottom).
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6.5.2.2 Parametric investigation

The effects of a number of system parameters and models were investigated
to assess the nature of the discrepancies between the calculated results and
the experimental data previously discussed. While a thorough analysis might
focus on a large collection of system parameters, including geometric modelling
choices, this investigation only focused on some thermal-dynamics aspects:
1) impact of coolant-structure heat transfer correlations; 2) impact of using
the diffusion-based volumetric fuel power density with adjoint flux-weighted
feedback fields versus the piecewise uniform fuel power density and unweighted
feedback fields; 3) impact of the pin gap conductance versus pin linear power
map, as it is a function of burnup, which was not known with certainty. This
focus on thermal models results from the observation that the most important
calculated reactivity contributions came from the fuel Doppler effect, fuel axial
expansion and control rod driveline expansion, as previously seen in Figure
6.5.3, which are all governed by the dynamics of the heating and cooling of
different reactor components, as well as how the related feedback fields are
weighted.

In the first place, the heat transfer correlations were investigated. It is
recalled that the reference model assumes a heat transfer coefficient calculated
from a constant Nusselt of 3.66 in the laminar regime (for Re < 1000), which
gains increasing importance in the core as the flow transitions to natural cir-
culation. As an opposite extreme case, the same heat transfer correlations for
the Nusselt number used in the turbulent regime were used in the laminar
regime, and the steady-state and transient calculations performed again. The
differences with respect to the reference case were fundamentally found to be
irrelevant, as the largest thermal resistances in the heat transfer between fuel
and coolant consist of the fuel itself, which has a low thermal conductivity, and
the gap conductance, which dominate the heat transfer process at low power
values (due to the broadening of the gap resulting from fuel cooling and thus
a reduction in gap conductance to small values ' 500W/m2/K, depending on
the burnup).

In the second place, the impact of using the diffusion-based fuel power
density with adjoint flux-weighting of feedback fields versus the use of a piece-
wise uniform fuel power density field and without feedback field weighting was
assessed. The results concerning outlet inner core temperature and total re-
activity evolution obtained by the former are presented on the left column of
Figure 6.5.6, while those obtained by the latter are presented on the right col-
umn of Figure 6.5.6. Before discussing the specific sub-cases that each column
shows, the general trend is that the latter model results in a larger temper-
ature excursion, that however more closely reproduces the experimental data
up to the maximum outlet temperature, also with regards to the initial local
maximum temperature attained at ' 10 s. The experimental total reactivity is
appreciably better resolved as well, in spite of the persistence of the discrepan-
cies. This is understandable in light of what was already discussed, specifically
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pertaining to the fact that diffusion-based calculations and the obtained fuel
power density relied on macroscopic cross sections obtained from previous in-
vestigations, while the piecewise uniform power density was provided by the
benchmark data compilers at ANL.

In the third place, the effect of employing different gap-conductances (de-
rived from the correlation by Lavarenne [99]) for different fuel burnup values
was investigated. It is recalled that the reference model previously discussed
used a map obtained for a burnup value of 50GWd/tHM , which was deemed a
reasonable assumption given the available knowledge of the core. The temper-
ature and reactivity evolution obtained by the use of different maps is reported
in Figure 6.5.6 for both the diffusion-based and piecewise uniform fuel power
density fields for the limiting cases of fresh fuel on one hand and fuel with a
burnup of 100GWd/tHM . While such a large burnup is prohibitively large for
fuels used in traditional reactor designs, fuel burnups in excess of said value
were attained in the FFTF [105].

Figure 6.5.6: comparison of calculated obtained by different models of FFTF LOFWOS Test
13. Left column: results obtained with adjoint-flux weighting of reactivity feedback fields
and the fuel power density distribution obtained by the diffusion-based neutronics. Right
column: results obtained by the unweighted averaging of reactivity feedback fields and a
piecewise constant power density distribution. Top row of each column: inner core outlet
temperature profiles. Bottom row: total reactivity.

A particular trend can be consistently observed: for larger values of burnup
and thus larger values of the gap conductance (see Table 6.4.1), both the overall
temperature and reactivity magnitudes decrease. There are two counter-acting
effects at play. On one hand, the larger gap thermal conductivity means that
the fuel cools down at a faster rate, which in turn means that the positive
reactivity insertion from fuel axial contraction and Doppler is inserted at a
faster rate as well. However, this effect does not change the final total amount
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of reactivity that can be inserted from fuel cooling. On the other hand, a
larger value of the gap thermal conductivity also results in a smaller value of
the fuel temperature at steady-state, so that the overall maximum reactivity
insertion from cooling fuel is reduced. This second effect is thus the most
relevant one, and the reduction of the total reactivity brings values closer to
the experimental ones.

On the temperature side, a smaller fuel temperature due to a larger gap
conductance will inevitably result in larger peak coolant temperatures. This
effect is significant when comparing fresh fuel to fuel of 50GWd/tHM of burnup,
and its importance is significantly reduced when comparing the 50GWd/tHM
burnup fuel to the 100GWd/tHM burnup fuel. A similar effect is thus expected
from varying values of the fuel thermal conductivity (which was assumed at
3W/m/K), yet this was not presently investigated.

Figure 6.5.7: Calculated inner core outlet temperature results for the FFTF LOFWOS Test
13 obtained compared against results obtained by the SAS4A/SASSYS-1 system code and
experimental results.

On a final note, the results obtained by the code are compared against results
obtained by other codes, namely the SAS4A/SASSYS-1 system code available
in the open literature [90] for LOFWOS Test 13. These are reported in Figure
6.5.7, are compared against the results obtained by the piecewise uniform fuel
power density model, unweighted feedback fields and gap conductance versus
linear pin power map evaluated at 50GWd/tHM . The agreement between
the two codes is significant, in spite of the discussed discrepancies with the
experimental results.

6.6 Conclusions
This chapter detailed the implementation and application of the thermal-
hydraulics methodology and resulting code into the broader GeN-Foam multi-
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physics environment, which was further expanded with the addition of a point
kinetics model for the treatment of neutronics. The resulting code was applied
to the analysis of the LOFWOS Test 13, which was performed at the FFTF
SFR to investigate the effectiveness of novel passive safety features, namely
the GEMs. This analysis takes place in the broader context on an IAEA CRP
benchmark re-analysis effort. The analysis of the transient was performed via
a coupled one-phase thermal-hydraulics and neutronics approach, both relying
on a 2-D representation of the reactor.

The thermal-hydraulics model represented the entire primary loop and part
of the secondary loop with a coarse-mesh approach. A novel model to treat
the heat exchange between primary and secondary loops via the IHXs was
developed relying on the same mesh-to-mesh field projection operations that
enable the coupling between different physics operating on different meshes.

The neutronics model extended exclusively over the reactor core and was
used for the calculation of the steady-state fuel power density distribution and
the neutron fluxes, which were used for the weighting of the fields used to
compute feedbacks for the point kinetics model. For the sake of comparison,
the results obtained by using piecewise uniform fuel power distributions were
investigated as well.

The overall steady-state results agree well with experimental data, with
the best agreement that comes from the use of piecewise uniform fuel power
distributions instead of the diffusion-neutronics results. This is understand-
able, as the macroscopic cross sections used for the diffusion calculation were
obtained for a different FFTF core configuration due to the unavailability of
precise fuel burnup data preceding LOFWOS Test 13. Conversely, piece-wise
uniform power density distribution were provided by benchmark data compil-
ers at ANL.

With regard to the transient, the evolution of various integral parameters
was compared against experimental data. The agreement could be deemed
reasonable, and good when compared to results obtained by previous inves-
tigations with other codes. While a parametric analysis was initiated in the
scope of the present investigation to assess some general aspects of the sensitiv-
ity of the computational model to different parameters, a broader investigation
will be performed within the context of the IAEA CRP benchmark to further
assess the capabilities of the model.
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Chapter 7

Conclusions

7.1 Summary
This work was centered on the investigation, development and application of
a coarse-mesh methodology for both one-phase and two-phase flow scenarios
in nuclear reactors. While the coarse-mesh approach aims at a degree of ac-
curacy comparable to that of existing sub-channel codes, the key elements
that motivated this thesis work lie in the broader context of recent trends and
needs in the nuclear field, namely: 1) greater geometric and physics modelling
flexibility, conducive to the investigation of non-traditional or complex reactor
concepts and safety features; 2) seamless integration into broader multi-physics
frameworks thanks to a streamlined coupling with other single-physics; 3) ca-
pability to take advantage of the massive parallel scalability potential that
modern High Performance Computing (HPC) clusters offers; 4) use of modern
programming paradigms to improve code performance, maintainability and to
simplify the implementation of novel solution algorithms, coupling schemes
and physical models.

A coarse-mesh methodology based on volume averaging techniques allowed
to address points 1 and 2, thanks to the possibility to use general computer-
aided design (CAD) geometries, unstructured meshes, and mesh-to-mesh pro-
jection algorithms. Points 3 and 4 were instead addressed via the adoption of
the Finite Volume Method (FVM)-based OpenFOAM C++ numerical library
as a development framework.

The principal investigated aspects, developments and findings of this work
are hereby summarized.

• The governing equations for mass, momentum and energy conservation
for a generic multi-phase system were rigorously derived in a coarse-mesh
context by making use of the mathematical tools of volume averaging.
The key steps in constructing a coarse-mesh representation of a system
of interest were derived and discussed. The theoretical nature of the
equation closure terms that arise as a natural consequence of the vol-
ume averaging approach was presented. In a multi-phase context, the
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formal equivalence of the governing equations obtained by a coarse-mesh
approach and a dispersed Euler-Euler approach was discussed.

• The methodology was implemented in a computer code for the analysis of
one-phase and two-phase flows in nuclear reactors by taking advantage of
the OpenFOAM numerical library. The discussion of the implementation
was centered on two fundamental aspects: the first, related to providing
an experimentally-informed closure to the governing equations as well as
specific numerical treatments for each closure term; the second, related
to the algorithms for the solution of the coupled system of equations for
mass, momentum and energy conservation.

• Experimentally-informed closure relations were implemented based on
available experimental correlations for the treatment of momentum and
heat transfer. Great emphasis was put on the modularity of the mod-
elling approach, which allows for a streamlined implementation of new
correlations for specific systems and working fluids.

• The developed thermal-hydraulics solution algorithm for the coupled
governing equations stems from the well know merged PISO-SIMPLE
(PIMPLE) solution algorithm, with further developments. The evalua-
tion of velocity predictors was found to be inconsequential on final cal-
culation results for the one-phase solution algorithm. With regards to
the two-phase pressure-velocity coupling algorithm, the ideas of Partial
Elimination were implemented in a novel, numerically implicit manner.
This was found to significantly improve convergence properties of two-
phase calculations involving tight momentum coupling between the two
phases when compared to existing approaches employed e.g. in standard
OpenFOAM-based two-phase solvers.

• The overall fluid-mechanics solution algorithm, with specific regard to
the phase fraction equation solution based on the Multidimensional Uni-
versal Limiter with Explicit Solution (MULES) algorithm and on the
developed pressure-velocity coupling algorithm, has been verified for a
number of cases via the Method of Manufactured Solutions (MMS). This
also involved the verification of two different approaches for managing
the velocity field for the solution of the pressure-velocity coupling. While
the treatment of variables in OpenFOAM is co-located with respect to
the computational mesh (i.e. cell-centered), an existing approach that
mimics a staggered grid (i.e. face-centered) approach for the velocity
treatment was investigated as well. While the overall mesh convergence
properties of the cell-centered algorithm were found to be better in flows
dominated by diffusive effects, the stability advantages offered by the
face-centered treatment were deemed of greater importance for two-phase
investigations.
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• The parallel performance of the developed computer code was investi-
gated up to 4096 computer cores via a strong scaling test. Linear scaling
was observed down to ≈ 10000 cells per domain, which is a well known
limit for OpenFOAM-based programs and confirms that no particular
bottlenecks have been introduced in the developed code.

• The main test case for this work consisted of Sodium-cooled Fast Reac-
tors (SFRs)-related applications, as these are among the most techno-
logically mature and nearest-term deployable advanced reactor concept.
Interest in sodium as a working fluid was also tied to numerical consid-
erations, as the simulation of phase change in sodium flows poses greater
numerical stability issues when compared to water, owing to the much
larger phase density difference between the two fluid states at their re-
spective operating pressures.

• The developed code was applied to the investigation of a number of
sodium boiling experiments for comparison, validation purposes. These
consisted of quasi-steady state boiling at the Joint Research Centre
(JRC) facilities in Ispra, Italy, and transient boiling in electrically heated
mock-up SFR fuel elements at the Kompakter Natriumsiede Kreislauf
(KNS) facility at the Kernforschungszentrum Karlsruhe, Germany. Very
good agreement between calculated and experimental results, consisting
of total two-phase frictional pressure drop versus inlet mass flow rate,
was obtained for the quasi-steady state analysis with a range of models
primarily related to the modelling of two-phase pressure drop multipli-
ers. Good agreements were obtained as well for the transient boiling
scenarios in terms of the evolution of the calculated inlet mass flow rate,
pressure at specific locations, vapour phase total volume and axial spa-
tial extent. However, a much larger sensitivity of these results to specific
models was observed.

• The developed code was applied to the investigation of specific SFR fuel
assembly features, namely the inter-assembly gap and novel safety fea-
tures such as assembly wrapper windows. The investigation was specifi-
cally aimed at assessing the impact of said features on the flow and tem-
perature distributions during assembly flow blockage, and it was limited
to one-phase flow scenarios. This investigation tentatively indicated that:
1) thermal effects of these features are not negligible and may result in
boiling delay or prevention in a number of circumstances; and 2) wrap-
per windows can give rise to 3-D effects that result in a non-monotonic
behaviour of assembly temperatures with respect to the inter-assembly
gap flow. The investigation was inclusive of a representative study for
assessing the mesh convergence of some integral results, and thus assess-
ing the limits of validity of the coarse-mesh approach. An approach was
proposed where results were deemed acceptable as long as they lied in
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the so-called asymptotic convergence range, and as long as error bands
could be estimated.

• The developed thermal-hydraulics code was integrated in the GeN-Foam
multi-physics solver. The resulting code was applied for the investigation
of the Loss Of Flow Without SCRAM (LOFWOS) Test 13 performed
at the Fast Flux Test Facility (FFTF), within the broader context of
an International Atomic Energy Agency (IAEA) coordinated reasearch
project (CRP) for the benchmark re-analysis of said test for validation
and code-to-code comparison purposes. The re-analysis was performed
from the standpoint of one-phase thermal-hydraulics and neutronics cou-
pling, involving the use of diffusion-based neutronics for steady-state cal-
culations and a newly developed point kinetics model for the transient
calculations. The overall agreement between calculated and transient
results is acceptable, yet the computational model will require further
refinement as the CRP progresses.

• The thermal-hydraulic investigations also demonstrated the flexibility
of the underlying OpenFOAM framework, which enables the implemen-
tation of ad-hoc models for treating phenomena such as: 1) the heat
transfer through assembly wrappers; and 2) the heat transfer between
physically disconnected portions of the computational domain to model
an intermediate heat exchanger (IHX).

7.2 Perspectives and future work
Future research work can be subdivided into methodological-related devel-
opments and the expansion of the application range to further systems and
working fluids of interest.

On the methodological side, the principal aspect that can be identified lies
in the investigation of the effectiveness of a first-order implicit method with
a purely upwind (i.e. first order) discretization of the advective terms for the
solution of the phase fraction equation for the two-phase algorithm. With re-
spect to the MULES, a first order-implicit upwind approach is expected to: 1)
reduce calculation times associated with the phase fraction equation solution,
as the MULES algorithm tends to be rather computationally expensive; 2)
lessen stability limitations coming from the Courant–Friedrichs–Lewy (CFL)
condition due to its implicit nature. On the downside, the first-order nature
of the approach is expected to make the approach more numerically diffusive.

While the breadth of applications is large given the current code capa-
bilities and framework flexibility, the most important extensions that can be
envisioned for this work are hereby summarized.

• Expansion of the modelling capabilities to the treatment of water as
a working fluid, specifically for one-phase Pressurized Water Reactor
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(PWR) and two-phase Boiling Water Reactor (BWR) analyses. This
collectively denotes the process of implementing the required correlations
for heat and mass transfer and their validation against experimental
data. This process is simplified by the developed modelling framework,
yet it is a project of a possibly very large breadth due to the maturity
of the Light Water Reactor (LWR) technology.

• Re-analysis of the impact of the investigated European Sodium-cooled
Fast Reactor (ESFR) features, namely inter-assembly gap flow and wrap-
per windows, during flow boiling.

• Within the context of the IAEA CRP, parametric analysis of the impact
of further physical models on the calculated LOFWOS Test 13 transient
with the FFTF model and/or geometric improvements of the model it-
self.

• Investigations of Reactivity Insertion Accidents (RIAs) experiments and
benchmark calculations for the further validation of the multi-physics
approach and code-to-code comparison.

• Extension of the developed point kinetics model to Molten Salt Reactors
(MSRs).

160



Appendix A

1-D nuclear fuel pin thermal model
This appendix intends to clarify the implementation of a 1-D nuclear fuel pin
model via a Finite Volume Method (FVM)-based discretization of the domain
and governing equations. A discussion of the discretization process in the most
general terms is presented in A.1, while the integration of the approach in a
coarse-mesh context is discussed in section A.2.

A.1 Modelling and discretization

A.1.1 General remarks and approximations

A nuclear fuel pin generally consists of a vertically stacked column of cylindrical
nuclear fuel pellets, which might or might not have a central hole, and a
metallic cladding, which encloses the fuel. By design, a thin gap is intended
to exist between the fuel pellets and the cladding. The cladding is generally
filled with an inert gas such as helium.

While a detailed study of the evolution of such a system from a thermal-
mechanical perspective belongs to the domain of fuel behaviour analysis, a
number of approximations are made in this context to enable a simplified
form of nuclear fuel description and its coupling with the fluid flow. These
approximations are:

1. the fuel pellet stack can be treated as a single axial continuum;

2. the fuel pellets and cladding dimensions do not evolve in time from the
perspective of the analysis of heat diffusion, and the geometry is axially
symmetric;

3. all the fields of interest (i.e. power density, temperature, flow conditions
at the outer cladding surface) are axially symmetric;

4. axial temperature gradients are negligibly small compared to radial tem-
perature gradients;

5. the thermo-physical properties of the fuel and cladding, (i.e. density, heat
capacity and thermal-conductivity) are constant in time and uniform
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over their respective domains, while the fuel power density profile is
uniform over the fuel but can change in time;

6. the absolute heat capacity of the gases in the gap and possibly central
fuel hole is negligible;

Approximations 1 through 4 are used to simplify the general 3-D heat diffusion
problem to a 1-D problem in the radial direction, as the reference frame that
is used consists of a cylindrical frame centered on the pin axis of symmetry.
In particular, it is approximation 4, in combination with the typically small
fuel thermal conductivity values, that allows to approximate the study of heat
conduction in the 3-D pin as a collection of 1-D radial heat conduction prob-
lems, one per pin-axial layer. While this neglects the axial coupling between
adjacent fuel and cladding axial layers, the generally varying conditions of the
fluid flow along the cladding outer surface in the axial direction allow to retain
a significant degree of axial coupling.

With regard to a heat diffusion problem in the form:

∂

∂t

(
ρ∗c∗pT

∗)−∇ · (κ∗∇T ∗) = q∗ (A.1.1)

which is defined over the entirety of the pin, i.e. fuel, gap, cladding, approx-
imations 5 and more specifically 6 allow to decompose it into two diffusion
problems, one over the fuel and one over the cladding:

ρfcp,f
∂

∂t
T ∗ − κf∇ · (∇T ∗) = q (A.1.2)

ρccp,c
∂

∂t
T ∗ − κc∇ · (∇T ∗) = 0 (A.1.3)

where the superscripts ∗ denote spatially continuous fields, the subscripts f ,
c are used to denote fuel and cladding properties respectively, T ∗ is the radial
temperature field and q is the fuel power density. These equations are coupled
via heat flow conservation considerations at the fuel-gap and gap-cladding
interfaces, based on gap conductance models. This spares the need for meshing
the mechanically thin gap and spares numerical discretization problems related
to the large difference in thermal conductivity between adjacent materials
layers, i.e. between fuel and gap, gap and cladding.

Sub-section A.1.2 discussed the definition and structure of the 1-D radial
mesh that is employed in this implementation of a nuclear fuel pin model.
Sub-section A.1.3 discusses the discretization of a heat diffusion equation in
the form A.1.2 in the bulk of either the fuel or cladding mesh, as the only
formal difference lies in the power density source term and its is fundamentally
inconsequential on the form of the discretized matrix coefficients. Sub-section
A.1.4 closes the problem constructed in sub-section A.1.3 via the application
of boundary conditions and coupling conditions to represent and enable the
solution of equations A.1.2, A.1.3 as a single system of implicitly coupled
equations.
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A.1.2 Domain discretization

Let us consider a nuclear fuel pin consisting of a fuel pellet of inner and outer
radii rfI , rfO and a cladding of inner and outer radii rcI , rcO, and let us focus
on an axial slice of height ∆z. This scenario is represented in Figure A.1.1,
alongside the 1-D mesh discretization that is adopted in this work.

Figure A.1.1: Representation of an axial slice of a nuclear fuel pin with the definition of a
1-D radial mesh. The mesh cell centers are indicated with circles, boundaries with vertical
lines. Cells are indexed with integers, boundaries with half-integers. Two additional ghost
cells are defined before the first and after the last cell, as they are useful for the imposition
of boundary conditions.

The computational domain consists of a mesh over the fuel domain, between
rfI and rfO, and one over the cladding domain, between rcI and rcO. While one
could define a third mesh over the gap, the negligible heat capacity of the gap
combined with its small width renders this effort unnecessary, as it becomes
reasonable to thermally couple fuel and cladding by imposing an instantaneous
heat flow balance through the gap, as it will be discussed later.

The fuel mesh is composed of Nf elements. Of these, the two boundary
elements at i = 0, i = Nf − 1 have a radial width of 1

2
∆rf , while cells in

the fuel bulk have a uniform radial width ∆rf = (rfO − rfI) / (Nf − 1). The
fuel mesh structure requires Nf ≥ 2. Similarly, the cladding is composed in
Nc elements, with the total number of mesh elements N = Nf + Nc. The
same approach is used as for the fuel meshing, so that the cladding boundary
cells at i = Nf and i = N − 1 have a radial width of 1

2
∆rc, while cells in

the cladding bulk have a uniform radial width ∆rc = (rcO − rcI) / (Nc − 1).
The cladding mesh structure thus also requires Nc ≥ 2. While this is by
no means the only possible geometric discretization, having boundary cells
centers coinciding with the fuel and cladding boundary surfaces simplifies the
application of boundary conditions.
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Please note that the cell centers, where field values are stored, are indexed
with integer indices i, while cell radial surface boundaries are indexed with
half-integer indices i ± 1

2
. The only exceptions are represented by boundary

cells at i = 0, i = Nf − 1, i = Nf , i = N , for which cell centers coincide with
one of the cell radial boundaries.

Each mesh cell Ωi, while represented in 1-D, still maintains a well defined
3-D volume in a Finite Volume context. With respect to the mesh defined in
Figure A.1.1, integer indices denote cell centers, while half-integers denote the
radial surfaces separating adjacent cells, so that a mesh cell centered around
ri is radially bound by two surfaces at ri− 1

2
and ri+ 1

2
. Thus, the volume of

each mesh cell Ωi is obtained as (in cylindrical coordinates):

Vi =

∫
Ωi

dV =

∫
Ωi

r dr dθ dz = ∆θ∆z
1

2

(
r2
i+ 1

2
− r2

i− 1
2

)
(A.1.4)

where ∆θ is the azimuthal width of the cells over the 1-D domain. Similarly,
the surface area vectors of the radial mesh boundaries separating cell mesh i
from adjacent cells are given by:

Si± 1
2

=

∫
∂Ω

i± 1
2

dS =

∫
∂Ω

i± 1
2

ni± 1
2
r dθ dz = ±ri± 1

2
∆θ∆z er = ±Si± 1

2
er

(A.1.5)
in which we recall that for cell i, the surface normals ni± 1

2
are always outward-

directed from the cell, so that ni+ 1
2

= er and ni− 1
2

= −er, with er being the
radial basis vector of the radial mesh direction.

A.1.3 Equation discretization

Let us consider a heat diffusion equation in the form introduced in equation
A.1.2:

ρcp
∂

∂t
T ∗ − κ∇ · (∇T ∗) = q (A.1.6)

where in the ∗ superscript indicates that said quantity represents a continuous
physical field, similarly to the notation introduced when discussing the FVM
in section 2.2. As this equation is fundamentally the same whether it is solved
over the fuel or cladding domain (with q∗ = 0 over the cladding), all further
subscripts pertaining to the fuel or cladding are suppressed in this sub-section.

Let us apply the procedure outlined in section 2.2 to discretize equation
A.1.6 via the FVM. For a generic mesh cell domain Ωi of the mesh introduced
in sub-section A.1.2 and a time step between times t and t + ∆t, integrating
said equation over those domains equates to a term-by-term integration:∫ t+∆t

t

∫
Ωi

ρcp
∂

∂t
T ∗ dV dt = Viρcp

∫ t+∆t

t

∂

∂t
Ti dt (A.1.7)

164



in which we have taken advantage of the notation introduced in 2.2.1, namely
that for a generic continuous quantity φ∗, its volume average over a mesh cell
domain Ωi is represented as:

φi =
1

Vi

∫
Ωi

φ∗(x, t) dV (A.1.8)

In the context of the implemented model, a backward Euler scheme is used for
the temporal discretization, so that:

∂

∂t
Ti =

Ti(t+ ∆t)− Ti(t)
∆t

=
T ni − T oi

∆t
(A.1.9)

where the superscripts n and o are be used to denote new and old time step
values. By considering equations A.1.9 and A.1.4, the time and volume inte-
grated time derivative term becomes:∫ t+∆t

t

∫
Ωi

ρcp
∂

∂t
T ∗ dV dt = ∆θ∆z

1

2

(
r2
i+ 1

2
− r2

i− 1
2

)
ρcp (T ni − T oi ) (A.1.10)

Let us consider the time and volume integrated diffusive term by taking ad-
vantage of the Gauss theorem as seen in section 2.2:∫ t+∆t

t

∫
Ωi

κ∇ · (∇T ∗) dV dt = κ

∫ t+∆t

t

∫
∂Ωi

∇T ∗ · dS dt (A.1.11)

Given that our mesh is fundamentally 1-D and thus bound by surfaces only
in the radial direction, the surface integral over ∂Ωi, namely the boundary of
cell i centered at ri reduces to the sum of the surface integrals over boundary
at ri+ 1

2
, denoted as ∂Ω+

i , and over the boundary at ri− 1
2
, denoted as ∂Ω−i . We

define a surface-normal gradient as:

∇⊥Ti± 1
2

=
1

Si± 1
2

∫
∂Ω±i

∇T ∗ · dS (A.1.12)

with the surface areas Si± 1
2
defined as of equation A.1.5. To enable the compu-

tation of this term, the surface normal is approximated via a central difference
scheme between the two cells i and i ± 1 sharing the face i ± 1

2
. Given the

uniformity of the mesh within each of the two domains, fuel and cladding, and
given that the backward nature of the time discretization scheme requires all
terms to be evaluated at the new time step t+ ∆t, the following is obtained:

∇⊥Ti+ 1
2
≈
T n
i± 1

2

− T ni
∆r

(A.1.13)

Please note that the formulation provided by A.1.13, while possibly counter-
intuitive for the i− 1

2
face (as one would be more prone to approximate it as

(T ni −T ni−i)/∆r), is a valid approximation as this is the surface-normal gradient,
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and the surface normal is anti-parallel to the radial mesh basis vector er on
face i− 1

2
. Further more, this approximation is valid at both cell faces only for

cells that are not boundary cells, i.e. i = 0, i = Nf − 1, i = Nf , i = N . The
gradient on these faces is provided instead by adequate boundary conditions,
that will be discussed in sub-section A.1.4.

By considering equations A.1.11, A.1.12, A.1.13, the time and volume in-
tegrated diffusive term can be calculated as:∫ t+∆t

t

∫
Ωi

κ∇ · (∇T ∗) dV dt =

≈ ∆t κ
(
∇⊥Ti+ 1

2
Si+ 1

2
+∇⊥Ti− 1

2
Si− 1

2

)
=

=
∆t κ

∆r

(
T ni+1Si+ 1

2
+ T ni−1Si− 1

2
− T ni

(
Si+ 1

2
+ Si− 1

2

))
(A.1.14)

To obtain the final formulation, the surface area definitions from A.1.5 are
employed in combination with the fact that, over uniform meshes, ri± 1

2
=

ri ± 1
2
∆r (in either the fuel or cladding domains), so that:∫ t+∆t

t

∫
Ωi

∇ · (κ∗∇T ∗) dV dt =

≈ ∆z∆θ
∆t κ

∆r

(
T ni+1ri+ 1

2
+ T ni−1ri− 1

2
− 2T ni ri

)
(A.1.15)

With regard to the power density term, its time and volume integral is evalu-
ated in virtue of A.1.4 and A.1.8 as:∫ t+∆t

t

∫
Ωi

q dV dt = ∆θ∆z
1

2

(
r2
i+ 1

2
− r2

i− 1
2

)
q (A.1.16)

By taking advantage of the results obtained so far, namely equations A.1.10,
A.1.15 and A.1.16, the time and volume integrated heat diffusion equation
over a generic mesh cell Ωi that is not a boundary cell can be obtained:

1

2∆t

(
r2
i+ 1

2
− r2

i− 1
2

)
ρcp (T ni − T oi ) +

− κ

∆r

(
T ni+1ri+ 1

2
+ T ni−1ri− 1

2
− 2T ni ri

)
=

=
1

2

(
r2
i+ 1

2
− r2

i− 1
2

)
q (A.1.17)

in which the ∆z and ∆θ terms could be cancelled out, as expected from a
1-D model. Please note that this is an algebraic relationship that relates the
(unknown) new time step temperature T ni within cell i to the (unknown) new
time step temperatures T ni±1 in the neighbouring cells. Thus, the heat diffusion
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problem is reduced to a set of coupled linear algebraic relationships, that can
be represented in matrix form. To this end, equation A.1.17 is re-arranged to
clearly highlight the matrix coefficients:

T ni+1

(
−κ

ri+ 1
2

∆r

)
+

+ T ni

( ρcp
2∆t

(
r2
i+ 1

2
− r2

i− 1
2

)
+ 2κ

ri
∆r

)
+

+ T ni−1

(
−κ

ri− 1
2

∆r

)
=

=
1

2

(
r2
i+ 1

2
− r2

i− 1
2

)(
q +

ρcp
∆t

T oi

)
(A.1.18)

The coefficient matrix is thus tri-diagonal, as for each row i there are three
elements in the i− 1, i, i+ 1 columns. The explicit source terms, inclusive of
the old time temperature contribution to the time derivative, have been moved
to the right-hand side (RHS). As a sanity check, note that all the temperature
coefficients have the same dimensions, namely W/m/K. Equation A.1.18 is
valid both within the fuel and the cladding (where qi = 0), as long as the
adequate material properties for ρ, cp, κ are used.

As the FVM was here applied without consideration of possible boundary
conditions, equation A.1.18 applies everywhere except at the inner, outer fuel
surfaces and inner, outer cladding surfaces, namely i = 0, i = Nf − 1, i = Nf ,
i = N .

A.1.4 Boundary conditions and fuel-cladding coupling

To obtain the formulation of equation A.1.18, the FVM is applied at the
boundary cells by taking boundary conditions into consideration. A separate
discussion for each boundary is made.

Inner fuel surface This is the boundary at r = rfI , which coincides with
the cell center of cell 0. If rfI = 0, (i.e. if the fuel has no central hole), a null
Neumann (i.e. zero gradient) boundary condition applies, as rfI = 0 geometri-
cally represents the 1-D axial fuel centerline, which cannot store energy due to
its dimensionality. If rfI > 0 a zero gradient boundary conditions is still valid
as approximation 6 introduced in sub-section A.1.1 assumes the absolute gas
heat capacities in the hole and gap are negligible. A negligible heat capacity
means that negligible amounts of heat flow through the inner fuel surface as a
consequence of possible temperature imbalances between the hole gas and the
fuel, so that the hole gas can be assumed to be isothermal with the fuel.

Let us apply the FVM to the discretization of the fuel governing equation,
namely A.1.2. With regards to the time derivative, the following is obtained:∫ t+∆t

t

∫
Ω0

ρfcp,f
∂

∂t
T ∗ dV dt = ∆θ∆z

1

2

(
r2

1
2
− r2

0

)
ρfcp,f (T n0 − T o0 ) (A.1.19)
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which is equivalent to equation A.1.10 with the difference lying in the value
of the cell volume. Note that r0 ≡ rfI as r0 denotes the radius of the first cell
center, which coincides with the inner fuel surface. The same holds for the
integral of the power density term, so that:∫ t+∆t

t

∫
Ω0

q dV dt = ∆θ∆z
1

2

(
r2

1
2
− r2

0

)
q (A.1.20)

With regards to the diffusive term, the application of the FVM leads to the
same results outlined by equation A.1.11. By introducing the same surface-
normal gradients defined by equation A.1.12 and by substituting left cell face
label −1

2
with the label 0 (since the left cell face and cell center coincide at

i = 0), equation A.1.11 is expanded as:

κf

∫ t+∆t

t

∫
∂Ωi

∇T ∗ · dS dt = κf

∫ t+∆t

t

(
S0∇⊥T0 + S 1

2
∇⊥T 1

2

)
dt (A.1.21)

While equation A.1.13 remains a valid approximation for ∇⊥T 1
2
, the tem-

perature gradient at the inner fuel surface ∇⊥T0 is given by the boundary
condition, namely ∇⊥T0 = 0. By taking advantage of these observations and
that S 1

2
= ∆z∆θ r 1

2
, the diffusive term can then be thus expressed as:

κf

∫ t+∆t

t

∫
∂Ωi

∇T ∗ · dS dt

≈ ∆z∆θ
∆t κf
∆rf

(
T n1 r 1

2
− T n0 r 1

2

)
(A.1.22)

By proceeding with the same steps outlined in the previous sub-section with
the aid of equations A.1.19, A.1.20, A.1.22, it is easy to show that the final
formulation of the discretized heat diffusion equation at i = 0 is:

T n1

(
−κf

r 1
2

∆rf

)
+

+ T n0

(
ρfcp,f
2∆t

(
r2

1
2
− r2

0

)
+ κf

r 1
2

∆rf

)
=

=
1

2

(
r2

1
2
− r2

0

)(
q +

ρfcp,f
∆t

T o0

)
(A.1.23)

Outer fuel surface This is the boundary at r = rfO, which coincides with
the cell center of cell Nf − 1. In virtue approximation 6 introduced in sub-
section A.1.1, the gap has a negligible heat capacity, so that an instantaneous
heat flux balance can be assumed at the outer fuel surface. Thus:

−κf∇⊥TNf−1 = Hg(T
n
Nf−1 − T nNf ) (A.1.24)
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where Hg is the heat conductance (i.e. heat transfer coefficient) of the gap and
we recall that TNf−1, TNf and the fuel inner surface and cladding outer surface
temperatures respectively.
Let us proceed by applying the FVM as seen before. The integrated temporal
derivative term is:∫ t+∆t

t

∫
ΩNf−1

ρfcp,f
∂

∂t
T ∗ dV dt =

= ∆θ∆z
1

2

(
r2
Nf−1 − r2

Nf−1− 1
2

)
ρfcp,f

(
T nNf−1 − T oNf−1

)
(A.1.25)

The integrated power density is:∫ t+∆t

t

∫
ΩNf−1

q dV dt = ∆θ∆z
1

2

(
r2
Nf−1 − r2

Nf−1− 1
2

)
q (A.1.26)

The integrated diffusive term, similarly to what seen for equation A.1.21 and
with the label change of Nf − 1 + 1

2
to Nf − 1 as the position of the right cell

boundary coincides with the cell center of Nf − 1, is expanded as:

κf

∫ t+∆t

t

∫
∂Ωi

∇T ∗ · dS dt =

= κf

∫ t+∆t

t

(
SNf−1− 1

2
∇⊥TNf−1− 1

2
+ SNf−1∇⊥TNf−1

)
dt (A.1.27)

Similarly to what was seen for the inner fuel surface, the surface gradient
∇⊥TNf−1− 1

2
can still be treated via equation A.1.13, while the surface gradient

at the fuel outer surface ∇⊥TNf−1 is to be treated via the boundary condition
A.1.24. Thus:

κf

∫ t+∆t

t

∫
∂Ωi

∇T ∗ · dS dt =

≈ T nNf ∆z∆θ∆tHg rNf−1+

+ T nNf−1∆z∆θ∆t

(
−HgrNf−1 − κf

rNf−1− 1
2

∆rf

)
+

+ T nNf−2∆z∆θ∆t κf
rNf−1− 1

2

∆rf
(A.1.28)

By taking advantage of these results, equations A.1.25, A.1.26, A.1.28, the

169



final discretized heat diffusion equation for cell Nf − 1 becomes:

T nNf
(
−Hg rNf−1

)
+

+ T nNf−1

(
ρfcp,f
2∆t

(
r2
Nf−1 − r2

Nf−1− 1
2

)
+Hg rNf−1 + κf

rNf−1− 1
2

∆rf

)
+

+ T nNf−2

(
−κf

rNf−1− 1
2

∆rf

)
=

=
1

2

(
r2
Nf−1 − r2

Nf−1− 1
2

)(
qf,Nf−1 +

ρfcp,f
∆t

T oNf−1

)
(A.1.29)

where we recall that rNf−1 ≡ rfO and that rNf−1− 1
2

= rNf−1 − 1
2
∆rf .

Inner cladding surface This is the boundary at r = rcI , which coincides
with the cell center of cell Nf . Energy conservation consideration apply,
namely that the total heat flow from the fuel outer surface must be equal
to the total heat flow to the cladding inner surface. This discussion must
be framed in terms of flow as the inner and outer fuel and cladding surface
areas are not equal, and thus equating heat fluxes would not ensure energy
conservation. Thus

−SNf−1κf∇⊥TNf−1 = SNfkc∇⊥TNf (A.1.30)

The sign difference arises from the fact that these are the surface-normal gra-
dient, and the surface normals of the outer fuel surface and the inner cladding
surface are anti-parallel (surface normals are defined as outward from the do-
main they enclose). By combining equation A.1.30 with equation A.1.24 to
relate the surface temperature gradient to the gap conductance:

κc∇⊥TNf =
SNf−1

SNf
Hg(T

n
Nf−1 − T nNf ) =

rNf−1

rNf
Hg(T

n
Nf−1 − T nNf ) (A.1.31)

By proceeding in the same manner as for the outer fuel surface yet by taking
advantage of A.1.31 and considering that q∗ = 0 in the cladding, it can be
shown that the final formulation of the heat diffusion equation at i = Nf is:

T nNf+1

(
−κc

rNf+ 1
2

∆rc

)
+

+ T nNf

(
ρccp,c
2∆t

(
r2
Nf+ 1

2
− r2

Nf

)
+Hg rNf−1 + κc

rNf+ 1
2

∆rc

)
+

+ T nNf−1

(
−Hg rNf−1

)
=

=
1

2

(
r2
Nf+ 1

2
− r2

Nf

) ρfcp,c
∆t

T oNf (A.1.32)
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Cladding outer surface This is the boundary at r = rcO, which coincides
with the cell center of cell N − 1. As per the assumptions made in sub-section
A.1.1, the fluid flow properties outside the cladding are characterized by an
average fluid temperature Tm and an average cladding fluid heat transfer coef-
ficient Hm. Please note that this approach is valid even if the fluid consists of
a two-phase flows, as long as mixture values for the fluid temperature and heat
transfer coefficient are used, as discussed in section 3.2.4. Thus, a convective
boundary condition at the outer cladding surface would prescribe:

−SN−1κc∇⊥TN−1 = Hm

(
T nN−1 − Tm

)
(A.1.33)

By proceeding in the same way as for the fuel outer surface, the FVM dis-
cretization of the cladding heat diffusion equation in cell N − 1 is obtained as:

T nN−1

(
ρccp,c
2∆t

(
r2
N−1 − r2

N−1− 1
2

)
+Hm rN−1 + κc

rN−1− 1
2

∆rc

)
+

+ T nN−2

(
−κc

rN−1− 1
2

∆rc

)
=

=
1

2

(
r2
N−1 − r2

N−1− 1
2

) ρccp,c
∆t

T oN−1 + TmHm rN−1 (A.1.34)

Where it is recalled that rN−1 ≡ rcO and rN−1− 1
2

= rN−1 − 1
2
∆rc.

A.1.5 Discretization summary and final remarks

A summary of the discretization process is presented for clarity. The coupled
system of equations A.1.2, A.1.3 is discretized over a 1-D mesh represented in
Figure A.1.1. This domain consists of two separate domains, one over the fuel
discretized with Nf cells, and one over the cladding discretized with Nc cells,
though a single mesh indexing is adopted for the whole mesh, thus consisting
of N = Nf + Nc cells labelled from 0 to N − 1. Four boundaries exist at the
inner and outer fuel and cladding surfaces. As cells adjacent to boundaries
have their cell centers located at the boundary surfaces, the boundary cells
are indicated with indices 0, Nf − 1, Nf , N − 1.

The coupled system of equation is discretized and linearized so to be rep-
resented as:

M̂T = b (A.1.35)

where M̂ is the discretized heat transport operator of size N × N , T is the
solution radial temperature field consisting of the new time step values T n,
and b is the source field, both described as a N × 1 arrays. In virtue of the
results shown in sub-sections A.1.2, A.1.3, the structure of A.1.35 is discussed
row by row:
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• row 0 represents the heat transport equation in the cell at the fuel inner
surface. The coefficients of columns 0 and 1 of M̂ consist of the coeffi-
cients of T n0 , T n1 respectively as shown in equation A.1.23. The source
term b0 consists of the RHS of equation A.1.23;

• row i ∀i ∈ [1, Nf − 2] represents the heat transport equation in the i-th
cell belonging to the fuel bulk. The coefficients of columns i− 1, i, i+ 1
of M̂ consist of the coefficients of T ni−1, T ni , T ni+1 respectively as shown
in equation A.1.18 where thermo-physical properties ρ, cp, κ are that of
the fuel. The source term bi consists of the RHS of equation A.1.18;

• row Nf − 1 represents the heat transport equation in the cell at the fuel
outer surface. The coefficients of columns Nf − 2, Nf − 1, Nf of M̂
consist of the coefficients of T nNf−2, T nNf−1, T nNf respectively as shown in
equation A.1.29. The source term bNf−1 consists of the RHS of equation
A.1.29;

• row Nf represents the heat transport equation in the cell at the cladding
inner surface. The coefficients of columns Nf − 1, Nf , Nf + 1 of M̂
consist of the coefficients of T nNf−1, T nNf , T

n
Nf+1 respectively as shown in

equation A.1.32. The source term bNf consists of the RHS of equation
A.1.32;

• row i ∀i ∈ [Nf + 1, N − 2] represents the heat transport equation in
the i-th cell belonging to the cladding bulk. The coefficients of columns
i−1, i, i+1 of M̂ consist of the coefficients of T ni−1, T ni , T ni+1 respectively
as shown in equation A.1.18 where thermo-physical properties ρ, cp, κ
are that of the cladding and qi = 0. The source term bi consists of the
RHS of equation A.1.18;

• row N − 1 represents the heat transport equation in the cell at the
cladding outer surface. The coefficients of columns N − 2 and N − 1
of M̂ consist of the coefficients of T nN−2, T nN−1 respectively as shown in
equation A.1.34. The source term bN−1 consists of the RHS of equation
A.1.34.

For each time step and/or outer iteration, the solution of the system repre-
sented by A.1.35 via any user-selected OpenFOAM iterative matrix solver will
update the pin temperature profile.

Note that since the discretization is based on the FVM, it is inherently
(energy) conservative regardless of mesh density and regardless of the mag-
nitude of the value of the cladding-fluid heat transfer coefficient Hm. This is
important to highlight as a Finite Difference discretization of the problem will
lead to a non-conservative formulation instead, whose non-conservation issues
worsen as the 1-D mesh is coarsened and/or as the cladding-fluid heat trans-
fer coefficient Hm is reduced (which might happen e.g. in boiling simulations
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involving dry-out). This latter aspect is a consequence of the problem being
ultimately bound at the inner fuel and outer cladding surfaces by boundary
conditions of the first (Neumann, i.e. zero gradient) or second (Robin, i.e. con-
vective) type, which operate exclusively over the gradient of the field and do
not provide an absolute value reference for the temperature field.

The FVM-based formulation presented so far is the one ultimately imple-
mented in the code, and represents a significant improvement over the formu-
lation of the original GeN-Foam code thermal-hydraulics. The latter adopted
a Finite Difference discretization scheme and solved the two discretized equa-
tions over the fuel and cladding separately, with an explicit evaluation of the
fuel-cladding heat fluxes for coupling purposes that was performed only once
per time step and/or iteration.

A.2 Coarse-mesh integration
The 1-D nuclear fuel pin model presented in section A.1 clearly operates as a
stand-alone model, requiring only scalar values for average fluid flow conditions
at the cladding. Let us briefly discuss how this model is then treated in a
coarse-mesh context.

Let us consider a bundle of pins organized in a certain lattice and whose
axes are aligned along an axis z. Let us focus our attention on a representative
elementary volume (REV) of volume V of the lattice of height ∆z that is
centered on a sub-channel, i.e. that contains a single axial slice of a single
fuel pin, whose cladding measures rcO in radius. By applying the volume
averaging process as discussed in section 2.2, the resulting pin bundle will be
characterized, within that REV, by a certain volume fraction obtained as:

αs =
∆zπr2

cO

V
(A.2.1)

The surface area density of the pin will be:

A′′′s =
∆z2πrcO

V
(A.2.2)

Thus, for a lattice of cylindrical pins, the interfacial area density and pin
volume fraction per cell are related as:

A′′′s =
2αs
rcO

(A.2.3)

Please note that this result is independent of the geometric definition of the
REV (e.g. it does not need to be a pin-centered sub-channel), as long as it
is an REV, meaning that its a geometric basis for the lattice. Furthermore,
if one were to perform the averaging process over the entire representative
volume (RV) over which the lattice exists, one would obtain the same results,
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as the RV can be geometrically composed starting from any of the possible
REVs.

Let us now use a collection of REVs as a computational mesh for the simu-
lation of fluid flow and heat transfer in said lattice, over its overall RV. Within
mesh cell we construct a 1-D nuclear fuel problem in the form of the system
A.1.35, which is thus meant to represent the thermal evolution of a represen-
tative nuclear fuel pin axial slice in said cell. The average fluid temperature
Tm and fluid-cladding heat transfer coefficients Hm that are required for the
solution of the 1-D problem in each consist precisely of the fluid temperature
and heat transfer coefficient values in the cell under consideration (in a two-
phase scenario, these consist of mixture values as discussed in section 3.2.4).
Conversely, the structure surface temperature used to define fluid-structure
heat fluxes when solving the fluid energy equation(s) consists of the cladding
outer temperature TN−1 ≡ TcO ≡ Ts for each mesh cell, with T being the 1-D
pin temperature profile that is obtained by the solution of A.1.35 within each
mesh cell.

Two important observations conclude this section. The first concerns en-
ergy conservation. The 1-D nuclear fuel pin model calculates a pin temper-
ature profile that ultimately depends on the fluid-cladding heat flux at the
outer cladding outer surface, which thus depends, among others, on the outer
cladding radius rcO. Conversely, the fluid-structure heat source term that fig-
ures in the fluid enthalpy equation(s) is represented as a heat flow per unit
volume of fluid, which thus depends on both the fluid phase fraction (which
can be related to the structure phase fraction αs) as well as the structure (i.e.
cladding) surface area density. It is thus clear that these tree variables cannot
be completely independent if energy conservation is to be ensured, and these
variables, namely αs, A′′′s , rcO are related precisely by A.2.3.

The second observation is that due to the averaging process, if the mesh
over the lattice RV were to consist of a generic unstructured mesh rather than
of a mesh whose cells consist of the lattice REVs, energy-conservation would
still be assured in virtue of the FVM, save for discretization errors in the power
density field q.
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